Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
811
4
avatar+895 

Disregard, I figured it out.

 

Find the exact value:

 May 11, 2019
edited by AdamTaurus  May 11, 2019
 #1
avatar+9675 
+1

cos1(1)=0tan(sin1(45)+cos1(1))=tan(sin1(45))=45242=43

.
 May 11, 2019
 #2
avatar+9675 
0

tan(cos1(45)+sin1(1))=tan(π2+cos1(45))=1tan(cos1(45))=152424=43

.
 May 11, 2019
edited by MaxWong  May 11, 2019
 #3
avatar+9488 
+3

Adding  π2  flips the tangent and negates it. If     tanθ=ab     then    tan(θ+π2)=ba    

hectictar  May 11, 2019
 #4
avatar+130466 
+1

tan ( arccos(4/5) + arcsin(1) ) =

 

tan (arcos(4/5) + pi/2)

 

Let    arccos(4/5)   =  θ           so  cos θ = 4/5       and sin θ = 3/5

 

So we have

 

tan ( θ + pi/2)  =

 

sin ( θ + pi/2)               sinθ cos pi/2   +  sin pi/2 * cos θ                 cos θ

___________   =        ___________________________   =    __________ =

cos (θ + pi/2)               cos θ cos pi/2  -   sin θ sin pi/2                  - sin θ  

 

 

(4/5)             - 4

____    =     ___

-(3/5)             3

 

 

I believe this is what hectictar was pointing out.......

 

cool cool cool

 May 11, 2019
edited by CPhill  May 11, 2019

1 Online Users