\(\cos^{-1}(1) = 0\\ \tan\left(\sin^{-1}\left(\dfrac{4}{5}\right)+\cos^{-1}(1)\right)\\ = \tan\left(\sin^{-1}\left(\dfrac{4}{5}\right)\right)\\ = \dfrac{4}{\sqrt{5^2-4^2}}\\ =\dfrac{4}{3}\)
.\(\tan\left(\cos^{-1}\left(\dfrac{4}5{}\right)+\sin^{-1}\left(1\right)\right)\\ =\tan\left(\dfrac{\pi}{2}+\cos^{-1}\left(\dfrac{4}5\right)\right)\\ =\dfrac{1}{\tan\left(\cos^{-1}\left(\dfrac{4}5\right)\right)}\\ =\dfrac 1{\dfrac{\sqrt{5^2-4^2}}4}\\ =\dfrac{4}{3}\)
.tan ( arccos(4/5) + arcsin(1) ) =
tan (arcos(4/5) + pi/2)
Let arccos(4/5) = θ so cos θ = 4/5 and sin θ = 3/5
So we have
tan ( θ + pi/2) =
sin ( θ + pi/2) sinθ cos pi/2 + sin pi/2 * cos θ cos θ
___________ = ___________________________ = __________ =
cos (θ + pi/2) cos θ cos pi/2 - sin θ sin pi/2 - sin θ
(4/5) - 4
____ = ___
-(3/5) 3
I believe this is what hectictar was pointing out.......