+0  
 
0
281
2
avatar

Use​ Gauss's approach to find the following sum​ (do not use​ formulas):

 

4+9+14+19+...+59.

 

The sum of the sequence is

Guest Sep 21, 2017
 #1
avatar
0

[59 - 4] / 5  + 1 =12 terms in the sequence

 

[59 + 4]  x  12/2 =

    63   x         6     =378

Guest Sep 22, 2017
 #2
avatar+19653 
0

find the following sum

Use​ Gauss's approach to find the following sum​ (do not use​ formulas):

4+9+14+19+...+59.

The sum of the sequence is ?

 

\(\tiny{ \begin{array}{rcccccccccccccccccccccccc} && 4&+& 9&+&14&+&19&+&24&+&29&+&34&+&39&+&44&+&49&+&54&+&59 \\ &(reverse)& 59&+&54&+&49&+&44&+&39&+&34&+&29&+&24&+&19&+&14&+& 9&+& 4 \\ \hline &(sum)& 63&+&63&+&63&+&63&+&63&+&63&+&63&+&63&+&63&+&63&+&63&+&63 \\ \end{array} } \)

 

The sum of the sequence is \(\mathbf{\frac{ 12 * 63}{ 2}=378}\)

 

laugh

heureka  Sep 22, 2017

2 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.