Find the integer $n$, $0 \le n \le 5$, such that \[n \equiv -3736 \pmod{6}.\]
Find the integer \(n\), \(0 \le n \le 5\), such that \(n \equiv -3736 \pmod{6}\).
\(\begin{array}{|rcll|} \hline \mathbf{n} &\mathbf{\equiv}& \mathbf{-3736 \pmod{6} } \\\\ n +3736 &=& 6m \quad | \quad m\in \mathbb{Z} \\ n &=& 6m -3736 \quad | \quad m=\left\lfloor\dfrac{3736}{6} + 1 \right\rfloor \\ n &=& 6\left\lfloor\dfrac{3736}{6} + 1 \right\rfloor -3736 \\ n &=& 6\cdot 623 -3736 \\ n &=& 3738 -3736 \\ \mathbf{n} &\mathbf{=}& \mathbf{2} \\ \hline \end{array}\)