We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
93
2
avatar+140 

Find the integer $n$, $0 \le n \le 5$, such that \[n \equiv -3736 \pmod{6}.\]

 Mar 29, 2019
 #1
avatar+101729 
+1

Find the integer \(n, \;\;where \;\;\;0 \le n \le 5, \,\;\;such\; that \;\;n \;\equiv -3736 \pmod{6}. \)

 

-3736/6 = -622.6666666666666667 = -622+ - 4/6

 

n=-4mod6 = (-4+6) mod 6 =    2 mod 6

n=2

 

 

Edited: I made a super stupid careless error.  

 Mar 29, 2019
edited by Melody  Mar 29, 2019
 #2
avatar+22266 
+1

Find the integer \(n\), \(0 \le n \le 5\), such that \(n \equiv -3736 \pmod{6}\).

 

\(\begin{array}{|rcll|} \hline \mathbf{n} &\mathbf{\equiv}& \mathbf{-3736 \pmod{6} } \\\\ n +3736 &=& 6m \quad | \quad m\in \mathbb{Z} \\ n &=& 6m -3736 \quad | \quad m=\left\lfloor\dfrac{3736}{6} + 1 \right\rfloor \\ n &=& 6\left\lfloor\dfrac{3736}{6} + 1 \right\rfloor -3736 \\ n &=& 6\cdot 623 -3736 \\ n &=& 3738 -3736 \\ \mathbf{n} &\mathbf{=}& \mathbf{2} \\ \hline \end{array}\)

 

laugh

 Mar 29, 2019

5 Online Users