+0  
 
0
321
1
avatar

find the inverse : ((√3x^4-8)/5)+10)9=f(x)

Guest Sep 22, 2014

Best Answer 

 #1
avatar
+10

$$\begin{array}{rll}
f(x)&=&9(\frac{\sqrt{3}x^4-8}{5}+10)\\\\
y&=&9(\frac{\sqrt{3}x^4-8}{5}+10)\\\\
\mbox{The inverse function will be}\\\\
x&=&9(\frac{\sqrt{3}y^4-8}{5}+10)\\\\
\frac{x}{9}&=&\frac{\sqrt{3}y^4-8}{5}+10\\\\
\frac{x}{9}-10&=&\frac{\sqrt{3}y^4-8}{5}\\\\
5\left(\frac{x}{9}-10\right)&=&\sqrt{3}y^4-8\\\\
\frac{5x}{9}-50&=&\sqrt{3}y^4-8\\\\
\frac{5x}{9}-42&=&\sqrt{3}y^4\\\\
\frac{5x-42*9}{9}&=&\sqrt{3}y^4\\\\
\frac{5x-378}{9}&=&\sqrt{3}y^4\\\\
\frac{5x-378}{9\sqrt3}&=&y^4\\\\
\frac{(5x-378)\sqrt3}{27}&=&y^4\\\\
y^4&=&\frac{(5x-378)\sqrt3}{27}\\\\
y&=&\pm\sqrt[4]{\frac{(5x-378)\sqrt3}{27}}\\\\
f^{-1}(x)&=&\pm\sqrt[4]{\frac{(5x-378)\sqrt3}{27}}\\\\


\end{array}$$

 

That's what I get anyway.

Guest Sep 23, 2014
 #1
avatar
+10
Best Answer

$$\begin{array}{rll}
f(x)&=&9(\frac{\sqrt{3}x^4-8}{5}+10)\\\\
y&=&9(\frac{\sqrt{3}x^4-8}{5}+10)\\\\
\mbox{The inverse function will be}\\\\
x&=&9(\frac{\sqrt{3}y^4-8}{5}+10)\\\\
\frac{x}{9}&=&\frac{\sqrt{3}y^4-8}{5}+10\\\\
\frac{x}{9}-10&=&\frac{\sqrt{3}y^4-8}{5}\\\\
5\left(\frac{x}{9}-10\right)&=&\sqrt{3}y^4-8\\\\
\frac{5x}{9}-50&=&\sqrt{3}y^4-8\\\\
\frac{5x}{9}-42&=&\sqrt{3}y^4\\\\
\frac{5x-42*9}{9}&=&\sqrt{3}y^4\\\\
\frac{5x-378}{9}&=&\sqrt{3}y^4\\\\
\frac{5x-378}{9\sqrt3}&=&y^4\\\\
\frac{(5x-378)\sqrt3}{27}&=&y^4\\\\
y^4&=&\frac{(5x-378)\sqrt3}{27}\\\\
y&=&\pm\sqrt[4]{\frac{(5x-378)\sqrt3}{27}}\\\\
f^{-1}(x)&=&\pm\sqrt[4]{\frac{(5x-378)\sqrt3}{27}}\\\\


\end{array}$$

 

That's what I get anyway.

Guest Sep 23, 2014

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.