+0  
 
0
600
2
avatar

  0 4

- 6 5

 Oct 22, 2015

Best Answer 

 #1
avatar+26387 
+30

  0 4

- 6 5

 

\(\boxed{~ A=\begin{pmatrix} a&b\\ c&d \end{pmatrix}\\ A^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d&-b\\ -c&a \end{pmatrix} ~}\)

 

 

\(\begin{array}{rcl} A&=&\begin{pmatrix} 0&4\\ -6&5 \end{pmatrix}\\ A^{-1}&=&\frac{1}{0\cdot 5- 4\cdot (-6)}\begin{pmatrix} 5&-4\\ -(-6)&0 \end{pmatrix}\\\\ A^{-1}&=&\frac{1}{24}\begin{pmatrix} 5&-4\\ 6&0 \end{pmatrix}\\\\ A^{-1}&=&\begin{pmatrix} \frac{5}{24}&\frac{-4}{24}\\ \frac{6}{24}&\frac{0}{24} \end{pmatrix}\\\\ A^{-1}&=&\begin{pmatrix} \frac{5}{24}&\frac{-1}{6}\\ \frac{1}{4}&0 \end{pmatrix} \end{array}\)

 

laugh

 Oct 22, 2015
edited by heureka  Oct 22, 2015
edited by heureka  Oct 22, 2015
 #1
avatar+26387 
+30
Best Answer

  0 4

- 6 5

 

\(\boxed{~ A=\begin{pmatrix} a&b\\ c&d \end{pmatrix}\\ A^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d&-b\\ -c&a \end{pmatrix} ~}\)

 

 

\(\begin{array}{rcl} A&=&\begin{pmatrix} 0&4\\ -6&5 \end{pmatrix}\\ A^{-1}&=&\frac{1}{0\cdot 5- 4\cdot (-6)}\begin{pmatrix} 5&-4\\ -(-6)&0 \end{pmatrix}\\\\ A^{-1}&=&\frac{1}{24}\begin{pmatrix} 5&-4\\ 6&0 \end{pmatrix}\\\\ A^{-1}&=&\begin{pmatrix} \frac{5}{24}&\frac{-4}{24}\\ \frac{6}{24}&\frac{0}{24} \end{pmatrix}\\\\ A^{-1}&=&\begin{pmatrix} \frac{5}{24}&\frac{-1}{6}\\ \frac{1}{4}&0 \end{pmatrix} \end{array}\)

 

laugh

heureka Oct 22, 2015
edited by heureka  Oct 22, 2015
edited by heureka  Oct 22, 2015
 #2
avatar+6251 
+10

as an alternative to the method heureka has used we can use Gaussian elimination and operate on an identity matrix as well.  At the end of the elimation the identity matrix will have been transformed into the inverse matrix.

 

\(\begin{pmatrix}0 &4 &| &1 &0\\ -6 & 5 &| &0 &1\end{pmatrix} \Rightarrow \\ \begin{pmatrix}-6 &5 &| &0 &1 \\ 0 &4 &| &1 &0\end{pmatrix} \Rightarrow \\ \begin{pmatrix}-6 &5 &| &0 &1 \\ 0 &1 &| &\frac 1 4 &0\end{pmatrix} \Rightarrow \\ \begin{pmatrix}-6 &0 &| &-\frac 5 4 &1 \\ 0 &1 &| &\frac 1 4 &0\end{pmatrix} \Rightarrow \\ \begin{pmatrix}1 &0 &| &\frac 5{24} &-\frac 1 6 \\ 0 &1 &| &\frac 1 4 &0\end{pmatrix} \Rightarrow \\\)

and we read off the inverse as

 

\(\begin{pmatrix}\frac 5{24} &-\frac 1 6 \\ \frac 1 4 &0\end{pmatrix}\)

 Oct 22, 2015

0 Online Users