+0  
 
-1
158
1
avatar+644 

Find the largest real x number for which there exists a real number y such that x^2 + y^2 = 2x + 2y.

waffles  Nov 18, 2017
Sort: 

1+0 Answers

 #1
avatar
+1

x^2 + y^2  =  2x + 2y

 

x^2  - 2x  + y^2 - 2y  = 0

 

Complete the square on x and y  and we have that

 

x^2 - 2x + 1   +  y^2 -2y + 1  =  2

 

( x - 1)^2  +  (y - 1)^2  =  2

 

x will be maximized when  y = 1...so....

 

(x - 1)^2  =  2       take the positive square root

 

x - 1  =  √2

 

x =  √2 + 1

 

 

  

CPhill Nov 6, 2017

Guest Nov 18, 2017

26 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy