+0  
 
-1
331
1
avatar+644 

Find the largest real x number for which there exists a real number y such that x^2 + y^2 = 2x + 2y.

 Nov 18, 2017
 #1
avatar
+1

x^2 + y^2  =  2x + 2y

 

x^2  - 2x  + y^2 - 2y  = 0

 

Complete the square on x and y  and we have that

 

x^2 - 2x + 1   +  y^2 -2y + 1  =  2

 

( x - 1)^2  +  (y - 1)^2  =  2

 

x will be maximized when  y = 1...so....

 

(x - 1)^2  =  2       take the positive square root

 

x - 1  =  √2

 

x =  √2 + 1

 

 

  

CPhill Nov 6, 2017

 Nov 18, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.