+0  
 
0
506
1
avatar+473 

Find the largest \(x\)-value at which the graphs of 

\(f(x)=e^{3x^2-|\lfloor x \rfloor|!}+\binom{22+735235|\lfloor x \rfloor |}{2356}+\phi(|\lfloor x \rfloor|+1)+72x^4+3x^3-6x^2+2x+1\) and 

\(g(x)=e^{3x^2-|\lfloor x \rfloor|!}+\binom{22+735235|\lfloor x \rfloor |}{2356}+\phi(|\lfloor x \rfloor|+1)+72x^4+4x^3-11x^2-6x+13\) intersect, where \(\lfloor x \rfloor\) denotes the floor function of \(x\), and \(\phi(n)\) denotes the sum of the positive integers \(\le\) and relatively prime to \(n\).

 Dec 29, 2018
 #1
avatar
0

6, trust me

 Apr 15, 2019

19 Online Users

avatar
avatar