We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
351
1
avatar+473 

Find the largest \(x\)-value at which the graphs of 

\(f(x)=e^{3x^2-|\lfloor x \rfloor|!}+\binom{22+735235|\lfloor x \rfloor |}{2356}+\phi(|\lfloor x \rfloor|+1)+72x^4+3x^3-6x^2+2x+1\) and 

\(g(x)=e^{3x^2-|\lfloor x \rfloor|!}+\binom{22+735235|\lfloor x \rfloor |}{2356}+\phi(|\lfloor x \rfloor|+1)+72x^4+4x^3-11x^2-6x+13\) intersect, where \(\lfloor x \rfloor\) denotes the floor function of \(x\), and \(\phi(n)\) denotes the sum of the positive integers \(\le\) and relatively prime to \(n\).

 Dec 29, 2018
 #1
avatar
0

6, trust me

 Apr 15, 2019

31 Online Users

avatar
avatar