Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
925
2
avatar

Find the last 2 digits of 7^2014?

 Mar 27, 2015

Best Answer 

 #2
avatar+118703 
+13

I am still getting used to these questions and I still like them. :)

 

I'd do it the same as CPhill but I would start with a smaller number.

 

71=772=4973=34374=2401$thatisareallyhelpfulone$$(Anynumberendingis01)raisedtoanypositiveintegernmustalsoendin01becauseonlythelast2digitswillaffecttheoutcomeand1n=1$(74)n$mustendin01foranypositiveintegern$72014=720127272014=745037272014=(74)5034972014=....014972014=....49

 

so the last 2 digits will be 49    Just like CPhill said 

 Mar 27, 2015
 #1
avatar+130477 
+13

Notice that

7^20  ends in 01

So 

(7^20)^5  = 7^100 also ends in 01

And

7^2000 = (7^100)^20   will also end in 01  

And 7^14   ends in 49

So   7^2014 =   7^2000 x 7^14  =      .........01  x  ........49  

 Will  also end in 49

 

  

 Mar 27, 2015
 #2
avatar+118703 
+13
Best Answer

I am still getting used to these questions and I still like them. :)

 

I'd do it the same as CPhill but I would start with a smaller number.

 

71=772=4973=34374=2401$thatisareallyhelpfulone$$(Anynumberendingis01)raisedtoanypositiveintegernmustalsoendin01becauseonlythelast2digitswillaffecttheoutcomeand1n=1$(74)n$mustendin01foranypositiveintegern$72014=720127272014=745037272014=(74)5034972014=....014972014=....49

 

so the last 2 digits will be 49    Just like CPhill said 

Melody Mar 27, 2015

0 Online Users