Find the last two digits of 707^1991
7071991(mod100)= ?
1.gcd(707,100)=1|707 and 100 are relatively prim 2.prim factorisation of 100=22⋅523.ϕ() is Euler's totient function, Euler's phi function ϕ(100)=100⋅(1−12)⋅(1−15)ϕ(100)=100⋅12⋅25ϕ(100)=404.707ϕ(100)≡1(mod100)70740≡1(mod100) Let ϕ(n) denote the totient function. Then aϕ(n)=1(modn) for all a relatively prime to n.
5.1991=40⋅49+317071991(mod100)=70740⋅49+31(mod100)=(70740)49⋅70731(mod100)≡(1)49⋅70731(mod100)≡70731(mod100)|7071≡7(mod100)≡731(mod100)|74≡1(mod100)≡74⋅7+3(mod100)|31=4⋅7+3≡(74)7⋅73(mod100)≡(1)7⋅73(mod100)≡73(mod100)≡343(mod100)≡43(mod100)
The last two digits of 7071991 is 43