Processing math: 100%
 
+0  
 
+5
852
2
avatar

Find the last two digits of 707^1991

 Apr 4, 2016
 #1
avatar+26397 
0

Find the last two digits of 707^1991

 

7071991(mod100)= ?

 

1.gcd(707,100)=1|707 and 100 are relatively prim 2.prim factorisation of 100=22523.ϕ() is Euler's totient function, Euler's phi function ϕ(100)=100(112)(115)ϕ(100)=1001225ϕ(100)=404.707ϕ(100)1(mod100)707401(mod100) Let ϕ(n) denote the totient function. Then aϕ(n)=1(modn) for all a relatively prime to n.

 

5.1991=4049+317071991(mod100)=7074049+31(mod100)=(70740)4970731(mod100)(1)4970731(mod100)70731(mod100)|70717(mod100)731(mod100)|741(mod100)747+3(mod100)|31=47+3(74)773(mod100)(1)773(mod100)73(mod100)343(mod100)43(mod100)

 

The last two digits of  7071991 is 43

 

laugh

 Apr 4, 2016
 #2
avatar
0

Here are the last 50 digits: 7876806422 2919117978 9088247467 9562579484 0331492043

 Apr 4, 2016

2 Online Users