f(x)=x^2e^-x/2, [-1,8]
f(x)=x2e−x2,[−1,8]f′(x)=2xe−x2+−12e−x2x2f′(x)=2xe−x2−0.5x2e−x2f′(x)=xe−x2(2−0.5x)$stationarypointswhen$f′(x)=0x=0or2=0.5xx=0orx=4
So you now need to find the y values for
x=0,x=4,x=−1andx=8
Then you will have your minimum and your maximum values for the given region.
f(x)=x^2e^-x/2, [-1,8]
f(x)=x2e−x2,[−1,8]f′(x)=2xe−x2+−12e−x2x2f′(x)=2xe−x2−0.5x2e−x2f′(x)=xe−x2(2−0.5x)$stationarypointswhen$f′(x)=0x=0or2=0.5xx=0orx=4
So you now need to find the y values for
x=0,x=4,x=−1andx=8
Then you will have your minimum and your maximum values for the given region.