+0  
 
0
1331
2
avatar

Find the number of distinct triangles with measurements of A=31 a = 10, and b = 40

 Feb 16, 2016

Best Answer 

 #1
avatar+2498 
+5

i think doesn t exsist:

 

\(\frac{10}{\sin{31}}=\frac{40}{sinB} \\ 10sin(B)=40\sin(31) \\ sin(B)=2.06015229964\\ B=?\)

 

but probably i am wrong so wait for boss

 Feb 16, 2016
 #1
avatar+2498 
+5
Best Answer

i think doesn t exsist:

 

\(\frac{10}{\sin{31}}=\frac{40}{sinB} \\ 10sin(B)=40\sin(31) \\ sin(B)=2.06015229964\\ B=?\)

 

but probably i am wrong so wait for boss

Solveit Feb 16, 2016
 #2
avatar+129849 
+5

You are correct, Solveit

 

Using the Law of Cosines.....we can find the possible angle opposite the longest side

 

cos-1  [  (40^2  - 31^2  - 10^2) / (-2*31*10) ]  =

 

cos-1 [ -0.8693548387096774] = about 150.38°

 

But.....this angle, added to the given one of 31°,  would  give us a triangle wose angle sum > 180......which is impossible.....

 

 

cool cool cool

 Feb 19, 2016

3 Online Users

avatar