+0  
 
0
485
1
avatar+644 

 

Find the solutions x of the equation 2ix^2 + x +3i = 0
 

waffles  Nov 8, 2017

Best Answer 

 #1
avatar+19830 
+2

Find the solutions x of the equation 2ix^2 + x +3i = 0

 

\(\begin{array}{|rcll|} \hline \mathbf{ax^2+bx+c} &\mathbf{=}& \mathbf{0} \\ \mathbf{x} &\mathbf{=}& \mathbf{{-b \pm \sqrt{b^2-4ac} \over 2a}} \\\\ 2ix^2 + x +3i &=& 0 \quad & | \quad a = 2i \quad b = 1 \quad c = 3i \\ x &=& \dfrac{-1\pm \sqrt{1^2-4\cdot(2i) \cdot (3i)} } {2\cdot 2i } \\ &=& \dfrac{-1\pm \sqrt{1-24i^2} } {4i } \quad & | \quad i^2 = -1 \\ &=& \dfrac{-1\pm \sqrt{1+24} } {4i } \\ &=& \dfrac{-1\pm \sqrt{25} } {4i } \\ &=& \dfrac{-1\pm 5 } {4i } \cdot \dfrac{i}{i} \\ &=& \dfrac{ (-1\pm 5)i } {4i^2 } \quad & | \quad i^2 = -1 \\ &=& \dfrac{ (-1\pm 5)i } {-4} \\ \\ x_1 &=& \dfrac{ (-1+ 5)i } {-4} \\ &=& \dfrac{ 4i } {-4} \\ \mathbf{x_1} &\mathbf{=}& \mathbf{-i} \\\\ x_2 &=& \dfrac{ (-1- 5)i } {-4} \\ &=& \dfrac{ -6i } {-4} \\ \mathbf{x_2} &\mathbf{=}& \mathbf{ \dfrac{3} {2}i } \\ \hline \end{array}\)

 

laugh

heureka  Nov 8, 2017
 #1
avatar+19830 
+2
Best Answer

Find the solutions x of the equation 2ix^2 + x +3i = 0

 

\(\begin{array}{|rcll|} \hline \mathbf{ax^2+bx+c} &\mathbf{=}& \mathbf{0} \\ \mathbf{x} &\mathbf{=}& \mathbf{{-b \pm \sqrt{b^2-4ac} \over 2a}} \\\\ 2ix^2 + x +3i &=& 0 \quad & | \quad a = 2i \quad b = 1 \quad c = 3i \\ x &=& \dfrac{-1\pm \sqrt{1^2-4\cdot(2i) \cdot (3i)} } {2\cdot 2i } \\ &=& \dfrac{-1\pm \sqrt{1-24i^2} } {4i } \quad & | \quad i^2 = -1 \\ &=& \dfrac{-1\pm \sqrt{1+24} } {4i } \\ &=& \dfrac{-1\pm \sqrt{25} } {4i } \\ &=& \dfrac{-1\pm 5 } {4i } \cdot \dfrac{i}{i} \\ &=& \dfrac{ (-1\pm 5)i } {4i^2 } \quad & | \quad i^2 = -1 \\ &=& \dfrac{ (-1\pm 5)i } {-4} \\ \\ x_1 &=& \dfrac{ (-1+ 5)i } {-4} \\ &=& \dfrac{ 4i } {-4} \\ \mathbf{x_1} &\mathbf{=}& \mathbf{-i} \\\\ x_2 &=& \dfrac{ (-1- 5)i } {-4} \\ &=& \dfrac{ -6i } {-4} \\ \mathbf{x_2} &\mathbf{=}& \mathbf{ \dfrac{3} {2}i } \\ \hline \end{array}\)

 

laugh

heureka  Nov 8, 2017

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.