+0  
 
0
460
1
avatar

Find the sum of the roots of \tan^2x-9\tan x+1=0 that are between x=0 and x=2pi radians.

Guest Feb 26, 2015

Best Answer 

 #1
avatar+92806 
+5

$$\\tan^2x-9tanx+1=0\\\\
$let y=tanx$\\\\
y^2-9y+1=0\\\\
y=\frac{9\pm\sqrt{81-4}}{2}\\\\
y=\frac{9\pm\sqrt{77}}{2}\\\\
tan(x)=\frac{9+\sqrt{77}}{2}\qquad or \qquad tan(x)=\frac{9-\sqrt{77}}{2}$$

 

x is can have he following values.   They are the roots in radians.

 

    $$\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)} = {\mathtt{1.458\: \!749\: \!780\: \!644\: \!212\: \!5}}$$

this is first quad so third quad equivalent is  

 

$${\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.458\: \!749\: \!780\: \!644\: \!212\: \!5}} = {\mathtt{4.600\: \!342\: \!434\: \!234\: \!005\: \!7}}$$

 

$$\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)} = {\mathtt{0.112\: \!046\: \!546\: \!150\: \!684\: \!1}}$$

this is first quad so third quad equivalent is  

 

$${\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.112\: \!046\: \!546\: \!150\: \!684\: \!1}} = {\mathtt{3.253\: \!639\: \!199\: \!740\: \!477\: \!3}}$$

 

Now I think these four are all the roots between 0 and 2pi radians so the sum of them would be

 

$$\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right){\mathtt{\,\times\,}}\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)}\right) = {\mathtt{6.505\: \!598\: \!527\: \!339\: \!575\: \!9}}$$

 

 I think that is right  

Melody  Feb 26, 2015
 #1
avatar+92806 
+5
Best Answer

$$\\tan^2x-9tanx+1=0\\\\
$let y=tanx$\\\\
y^2-9y+1=0\\\\
y=\frac{9\pm\sqrt{81-4}}{2}\\\\
y=\frac{9\pm\sqrt{77}}{2}\\\\
tan(x)=\frac{9+\sqrt{77}}{2}\qquad or \qquad tan(x)=\frac{9-\sqrt{77}}{2}$$

 

x is can have he following values.   They are the roots in radians.

 

    $$\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)} = {\mathtt{1.458\: \!749\: \!780\: \!644\: \!212\: \!5}}$$

this is first quad so third quad equivalent is  

 

$${\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.458\: \!749\: \!780\: \!644\: \!212\: \!5}} = {\mathtt{4.600\: \!342\: \!434\: \!234\: \!005\: \!7}}$$

 

$$\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)} = {\mathtt{0.112\: \!046\: \!546\: \!150\: \!684\: \!1}}$$

this is first quad so third quad equivalent is  

 

$${\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.112\: \!046\: \!546\: \!150\: \!684\: \!1}} = {\mathtt{3.253\: \!639\: \!199\: \!740\: \!477\: \!3}}$$

 

Now I think these four are all the roots between 0 and 2pi radians so the sum of them would be

 

$$\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{\pi}}\right){\mathtt{\,\times\,}}\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{9}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{77}}}}\right)}{{\mathtt{2}}}}\right)}\right) = {\mathtt{6.505\: \!598\: \!527\: \!339\: \!575\: \!9}}$$

 

 I think that is right  

Melody  Feb 26, 2015

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.