Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1260
1
avatar

Find the sum of the roots of \tan^2x-9\tan x+1=0 that are between x=0 and x=2pi radians.

 Feb 26, 2015

Best Answer 

 #1
avatar+118703 
+5

tan2x9tanx+1=0$lety=tanx$y29y+1=0y=9±8142y=9±772tan(x)=9+772ortan(x)=9772

 

x is can have he following values.   They are the roots in radians.

 

    (π180)×tan3601((9+77)2)=1.4587497806442125

this is first quad so third quad equivalent is  

 

π+1.4587497806442125=4.6003424342340057

 

(π180)×tan3601((977)2)=0.1120465461506841

this is first quad so third quad equivalent is  

 

π+0.1120465461506841=3.2536391997404773

 

Now I think these four are all the roots between 0 and 2pi radians so the sum of them would be

 

(1+π)×(π180)×(tan3601((9+77)2)+tan3601((977)2))=6.5055985273395759

 

 I think that is right  

 Feb 26, 2015
 #1
avatar+118703 
+5
Best Answer

tan2x9tanx+1=0$lety=tanx$y29y+1=0y=9±8142y=9±772tan(x)=9+772ortan(x)=9772

 

x is can have he following values.   They are the roots in radians.

 

    (π180)×tan3601((9+77)2)=1.4587497806442125

this is first quad so third quad equivalent is  

 

π+1.4587497806442125=4.6003424342340057

 

(π180)×tan3601((977)2)=0.1120465461506841

this is first quad so third quad equivalent is  

 

π+0.1120465461506841=3.2536391997404773

 

Now I think these four are all the roots between 0 and 2pi radians so the sum of them would be

 

(1+π)×(π180)×(tan3601((9+77)2)+tan3601((977)2))=6.5055985273395759

 

 I think that is right  

Melody Feb 26, 2015

3 Online Users