We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
373
1
avatar

Find the symmetry and vertex of the function F(x)= negative four x raised to the second power plus sixteen x minus eight

 Jan 5, 2015

Best Answer 

 #1
avatar+17776 
+5

F(x)  =  -4x² + 16 x - 8

The x-value of the vertex can be found by using the formula:  -b/(2a).

For this problem,  a = -4,  b = 16, and  c = -8.

x-value  =  -b/(2a)  =  -16/(2·-4)  =  -16/-8  =  2

If  x = 2, F(2)  =  -4(2)² + 16(2) - 8  =  8

So, the vertex is  (2, 8).

The equation of the line of symmetry is the equation of the vertical line that passes through the vertex. This equation is:  x  =  2.

 Jan 6, 2015
 #1
avatar+17776 
+5
Best Answer

F(x)  =  -4x² + 16 x - 8

The x-value of the vertex can be found by using the formula:  -b/(2a).

For this problem,  a = -4,  b = 16, and  c = -8.

x-value  =  -b/(2a)  =  -16/(2·-4)  =  -16/-8  =  2

If  x = 2, F(2)  =  -4(2)² + 16(2) - 8  =  8

So, the vertex is  (2, 8).

The equation of the line of symmetry is the equation of the vertical line that passes through the vertex. This equation is:  x  =  2.

geno3141 Jan 6, 2015

20 Online Users

avatar