+0  
 
+5
518
2
avatar+1771 

Find the units digit of $3^{777}$.

Mellie  Jul 13, 2015

Best Answer 

 #2
avatar+18956 
+10

$$\small{\text{
Find the units digit of $3^{777}$ or $3^{777} = x \pmod {10} $
}}$$

 

$$\small{\text{$
\begin{array}{lrcll}
1. & ~~gcd(10,3) &=& 1 \qquad & | \qquad gcd = \mathrm{greatest~common~ divisor}\\
2. & ~~\varphi{(10)} &=& 4 \qquad & | \qquad \varphi = \mathrm{Euler ~function}\qquad \varphi{(10)} = 10 \cdot (1-\dfrac{1}{2})\cdot (1-\dfrac{1}{5}) \\
3. & ~~a^{\varphi (n)} &\equiv& 1 \pmod{n} \qquad & | \qquad \mathrm{Euler's ~Theorem,~~ if~ } gcd(a,n)=1 \qquad \\
& ~~ 3^4 &\equiv& 1 \pmod {10} \qquad & | \qquad n = 10\qquad a = 3\\\\
& & 3^{777} \pmod{10}\\\\
& &\equiv& 3^{4\cdot 194 +1} \pmod{10}\\
& &\equiv& 3^{4\cdot 194}\cdot 3 \pmod{10}\\
& &\equiv& (3^4)^{194}\cdot 3 \pmod{10}\\
& &\equiv& (\underbrace{3^4}_{=1 \pmod{10}})^{194}\cdot 3 \pmod{10}\\\\
& &\equiv& 1^{194}\cdot 3 \pmod{10}\\
& &\equiv & \textcolor[rgb]{1,0,0}{3} \pmod{10}\\ \\
& \mathbf{the~ Units~ digit~ of ~} 3^{777} \mathbf{ ~is ~} 3\\
\end{array}
$ }}$$

 

heureka  Jul 14, 2015
Sort: 

2+0 Answers

 #1
avatar+26493 
+10

When looking for the units digit of 3n, look at the value of mod(n,4).  When this is 0, the units digit is 1, when it is 1 the units digit is 3, when it is 2 the units digit is 9, when it is 3 the units digit is 7.

 

mod(777,4) = 1, so the units digit of 3777 is 3.

 

.

Alan  Jul 14, 2015
 #2
avatar+18956 
+10
Best Answer

$$\small{\text{
Find the units digit of $3^{777}$ or $3^{777} = x \pmod {10} $
}}$$

 

$$\small{\text{$
\begin{array}{lrcll}
1. & ~~gcd(10,3) &=& 1 \qquad & | \qquad gcd = \mathrm{greatest~common~ divisor}\\
2. & ~~\varphi{(10)} &=& 4 \qquad & | \qquad \varphi = \mathrm{Euler ~function}\qquad \varphi{(10)} = 10 \cdot (1-\dfrac{1}{2})\cdot (1-\dfrac{1}{5}) \\
3. & ~~a^{\varphi (n)} &\equiv& 1 \pmod{n} \qquad & | \qquad \mathrm{Euler's ~Theorem,~~ if~ } gcd(a,n)=1 \qquad \\
& ~~ 3^4 &\equiv& 1 \pmod {10} \qquad & | \qquad n = 10\qquad a = 3\\\\
& & 3^{777} \pmod{10}\\\\
& &\equiv& 3^{4\cdot 194 +1} \pmod{10}\\
& &\equiv& 3^{4\cdot 194}\cdot 3 \pmod{10}\\
& &\equiv& (3^4)^{194}\cdot 3 \pmod{10}\\
& &\equiv& (\underbrace{3^4}_{=1 \pmod{10}})^{194}\cdot 3 \pmod{10}\\\\
& &\equiv& 1^{194}\cdot 3 \pmod{10}\\
& &\equiv & \textcolor[rgb]{1,0,0}{3} \pmod{10}\\ \\
& \mathbf{the~ Units~ digit~ of ~} 3^{777} \mathbf{ ~is ~} 3\\
\end{array}
$ }}$$

 

heureka  Jul 14, 2015

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details