+0  
 
+5
682
2
avatar+1781 

Find the units digit of $3^{777}$.

Mellie  Jul 13, 2015

Best Answer 

 #2
avatar+19632 
+10

$$\small{\text{
Find the units digit of $3^{777}$ or $3^{777} = x \pmod {10} $
}}$$

 

$$\small{\text{$
\begin{array}{lrcll}
1. & ~~gcd(10,3) &=& 1 \qquad & | \qquad gcd = \mathrm{greatest~common~ divisor}\\
2. & ~~\varphi{(10)} &=& 4 \qquad & | \qquad \varphi = \mathrm{Euler ~function}\qquad \varphi{(10)} = 10 \cdot (1-\dfrac{1}{2})\cdot (1-\dfrac{1}{5}) \\
3. & ~~a^{\varphi (n)} &\equiv& 1 \pmod{n} \qquad & | \qquad \mathrm{Euler's ~Theorem,~~ if~ } gcd(a,n)=1 \qquad \\
& ~~ 3^4 &\equiv& 1 \pmod {10} \qquad & | \qquad n = 10\qquad a = 3\\\\
& & 3^{777} \pmod{10}\\\\
& &\equiv& 3^{4\cdot 194 +1} \pmod{10}\\
& &\equiv& 3^{4\cdot 194}\cdot 3 \pmod{10}\\
& &\equiv& (3^4)^{194}\cdot 3 \pmod{10}\\
& &\equiv& (\underbrace{3^4}_{=1 \pmod{10}})^{194}\cdot 3 \pmod{10}\\\\
& &\equiv& 1^{194}\cdot 3 \pmod{10}\\
& &\equiv & \textcolor[rgb]{1,0,0}{3} \pmod{10}\\ \\
& \mathbf{the~ Units~ digit~ of ~} 3^{777} \mathbf{ ~is ~} 3\\
\end{array}
$ }}$$

 

heureka  Jul 14, 2015
 #1
avatar+26750 
+10

When looking for the units digit of 3n, look at the value of mod(n,4).  When this is 0, the units digit is 1, when it is 1 the units digit is 3, when it is 2 the units digit is 9, when it is 3 the units digit is 7.

 

mod(777,4) = 1, so the units digit of 3777 is 3.

 

.

Alan  Jul 14, 2015
 #2
avatar+19632 
+10
Best Answer

$$\small{\text{
Find the units digit of $3^{777}$ or $3^{777} = x \pmod {10} $
}}$$

 

$$\small{\text{$
\begin{array}{lrcll}
1. & ~~gcd(10,3) &=& 1 \qquad & | \qquad gcd = \mathrm{greatest~common~ divisor}\\
2. & ~~\varphi{(10)} &=& 4 \qquad & | \qquad \varphi = \mathrm{Euler ~function}\qquad \varphi{(10)} = 10 \cdot (1-\dfrac{1}{2})\cdot (1-\dfrac{1}{5}) \\
3. & ~~a^{\varphi (n)} &\equiv& 1 \pmod{n} \qquad & | \qquad \mathrm{Euler's ~Theorem,~~ if~ } gcd(a,n)=1 \qquad \\
& ~~ 3^4 &\equiv& 1 \pmod {10} \qquad & | \qquad n = 10\qquad a = 3\\\\
& & 3^{777} \pmod{10}\\\\
& &\equiv& 3^{4\cdot 194 +1} \pmod{10}\\
& &\equiv& 3^{4\cdot 194}\cdot 3 \pmod{10}\\
& &\equiv& (3^4)^{194}\cdot 3 \pmod{10}\\
& &\equiv& (\underbrace{3^4}_{=1 \pmod{10}})^{194}\cdot 3 \pmod{10}\\\\
& &\equiv& 1^{194}\cdot 3 \pmod{10}\\
& &\equiv & \textcolor[rgb]{1,0,0}{3} \pmod{10}\\ \\
& \mathbf{the~ Units~ digit~ of ~} 3^{777} \mathbf{ ~is ~} 3\\
\end{array}
$ }}$$

 

heureka  Jul 14, 2015

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.