Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3646
15
avatar+143 
Find the value of  such that the area of a triangle whose vertices have coordinates (6, 5), (8, 2) and ( x, 11) is 15 square units.

 

















a.


-8 or 12


c.


16, -8


b.


6, -12


d.


4, 

 Nov 17, 2014

Best Answer 

 #2
avatar+118703 
+10

I just did a whole page of latex and lost the whole lot so now I will do a condensed version. 

 

Heureka, Your answer looks great but I don't understand it so I will do it my way.

Maybe you can explain your way?

Anyway here goes- again

Find the value of  such that the area of a triangle whose vertices have coordinates

P(6, 5), Q(8, 2) and R( x, 11) is 15 square units.

 

distance PQ=sqrt(13)

Equation of line PQ is

3x+2y-28=0

Now I need the perp distance from R to PQ

 

 

a=3, b=2, c=-28, x1=x, y1=11

 

d=|3x+2228|13d=|3x6|13d=|3x6|13

 

perpendicular distance from R to PQ=|3x6|13Area=12×13×|3x6|1315=12×|3x6|30=|3x6|30=3x6or30=63x36=3xor24=3xx=12orx=8

 

Below are the 2 possible triangles.  :)

 

 Nov 18, 2014
 #1
avatar+26397 
+5

Find the value of  such that the area of a triangle whose vertices have coordinates (6, 5), (8, 2) and ( x, 11) is 15 square units.

area = \pm15 =  \dfrac{ \left|  \left[ \left(\begin{array}{c} x\\ 11 \end{array} \right)  - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \times\left[ \left(\begin{array}{c} 8\\ 2 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \right| }  {2} \\\\ \pm30 =  \left|  \left[ \left(\begin{array}{c} x\\ 11 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \times\left[ \left(\begin{array}{c} 8\\ 2 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \right| } \\ \pm30 =  \left|  \left(\begin{array}{c} x-6\\ 11-5 \end{array} \right) \times \left(\begin{array}{c} 8-6\\ 2-5 \end{array} \right) \right| } \\ \pm30 =  \left|  \left(\begin{array}{c} x-6\\ 6\end{array} \right) \times \left(\begin{array}{c} 2\\ -3\end{array} \right) \right| } \\\\ x_1 =?\\ 30 =  \left|  \left(\begin{array}{c} x_1-6\\ 6\end{array} \right) \times \left(\begin{array}{c} 2\\ -3\end{array} \right) \right| } \\ (x_1-6)(-3)-6*2=30\\ (x_1-6)(-3)=42\\  (x_1-6)=-14\\ \textcolor[rgb]{1,0,0}{x_1 =-8}\\\\

x_2 =?\\  -30 =  \left|  \left(\begin{array}{c} x_2-6\\ 6\end{array} \right) \times \left(\begin{array}{c} 2\\ -3\end{array} \right) \right|  } \\  (x_2-6)(-3)-6*2=-30\\  (x_2-6)*3+12=30\\ (x_2-6)*3=18\\  x_2-6=6\\ \textcolor[rgb]{1,0,0}{ x_2=12 }

a. is okay

 Nov 18, 2014
 #2
avatar+118703 
+10
Best Answer

I just did a whole page of latex and lost the whole lot so now I will do a condensed version. 

 

Heureka, Your answer looks great but I don't understand it so I will do it my way.

Maybe you can explain your way?

Anyway here goes- again

Find the value of  such that the area of a triangle whose vertices have coordinates

P(6, 5), Q(8, 2) and R( x, 11) is 15 square units.

 

distance PQ=sqrt(13)

Equation of line PQ is

3x+2y-28=0

Now I need the perp distance from R to PQ

 

 

a=3, b=2, c=-28, x1=x, y1=11

 

d=|3x+2228|13d=|3x6|13d=|3x6|13

 

perpendicular distance from R to PQ=|3x6|13Area=12×13×|3x6|1315=12×|3x6|30=|3x6|30=3x6or30=63x36=3xor24=3xx=12orx=8

 

Below are the 2 possible triangles.  :)

 

Melody Nov 18, 2014
 #3
avatar+130477 
0

Melody....how did you obtain the fraction    l 3x - 6 l / √13     as a perpendicular distance from R to PQ ????.....I'm not seeing how you got that

 Nov 18, 2014
 #4
avatar+118703 
+5

Sorry Chris that was on the Latex that i lost.

But here is the formula

 

 Nov 18, 2014
 #5
avatar+130477 
0

I know this formula....but I don't see how you're getting this......can you "connect the dots" more fully for me??

 

Thanks

 

 Nov 18, 2014
 #6
avatar+26397 
+5

heureka Nov 18, 2014
 #7
avatar+118703 
0

Thanks Heureka, that will give me plenty to think about :))

 Nov 18, 2014
 #8
avatar+118703 
0

I've added some more dots but if you still want more let me know. :)))

I added it in my original explanation.

Well I thought I did but it does not appear to be there.

this is not my night for presentation.  LOL

I'll try again. :))

 Nov 18, 2014
 #9
avatar+118703 
0

ok I redid it AGAIN. :)))))

 

If you still have questions just ask :))

 Nov 18, 2014
 #10
avatar+130477 
+5

OK, Melody...got it.....

 

 Nov 18, 2014
 #11
avatar+118703 
+5

Well that is good - NOW we both have to 'get' Heureka's answer  LOL 

 Nov 18, 2014
 #12
avatar+130477 
0

I actually recall (kinda') that method from Linear Algebra........don't remember how to calculate that cross-product......maybe I'll go back and review it....

 

Hey.....I'm still working out how to write an equation of a line......!!!!

 

 Nov 18, 2014
 #13
avatar+118703 
+5

Yes I too have only the vaguest recollection of this stuff :))

 Nov 18, 2014
 #14
avatar+33658 
+5

Here's a graphical solution to save having to bother with all that messy stuff!

Graphical solution

.

 Nov 18, 2014
 #15
avatar+33658 
+5

Alternatively, if you prefer a numerical solution, continue using Heron's formula for the area and:

Non-graphical solution

.

 Nov 18, 2014

3 Online Users