Let's call this fraction x. Now forget about the\(\frac{1}{1+\frac{1}{2+}}\)
Now the rest is exactly the same as x.
Thus, \(\frac{1}{1+\frac{1}{2+x}}=x\)
Doing cross multiplication, we get \(1=x+\frac{x}{2+x}=\frac{x^2+x}{x+2}\)
Doing cross multiplication again(on the left and right side), we get: \(x+2=x^2+x \rightarrow 0=(+1)x^2+(+0)x+(-2).\)
In this case, a=+1, b=0, c=-2. Using the quadratic formula \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
We get x=\(\frac{+\sqrt{8}}{2}\)or \(\frac{-\sqrt{8}}{2}\)
Since all of 1,1,2,1,1,1,2,1,1,1,2,1.... are all positive, x must be positive.
So, x=\(\frac{\sqrt{8}}{2}=\sqrt{2}\)(approximation: 1.41421356...)
Let's call this fraction x. Now forget about the\(\frac{1}{1+\frac{1}{2+}}\)
Now the rest is exactly the same as x.
Thus, \(\frac{1}{1+\frac{1}{2+x}}=x\)
Doing cross multiplication, we get \(1=x+\frac{x}{2+x}=\frac{x^2+x}{x+2}\)
Doing cross multiplication again(on the left and right side), we get: \(x+2=x^2+x \rightarrow 0=(+1)x^2+(+0)x+(-2).\)
In this case, a=+1, b=0, c=-2. Using the quadratic formula \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
We get x=\(\frac{+\sqrt{8}}{2}\)or \(\frac{-\sqrt{8}}{2}\)
Since all of 1,1,2,1,1,1,2,1,1,1,2,1.... are all positive, x must be positive.
So, x=\(\frac{\sqrt{8}}{2}=\sqrt{2}\)(approximation: 1.41421356...)