We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
550
2
avatar

How do I find the x-intercepts of x^4-7x^2-3?

 Feb 20, 2015

Best Answer 

 #2
avatar+22358 
+10

How do I find the x-intercepts of  ?

$$\boxed{x^4-7x^2-3=0}\qquad
\small{\text{
we set $ z= x^2 $ with $\boxed{x=\sqrt{z}}
$}}\\\\
\small{\text{we have $ z^2-7z-3= 0 $}}\\\\
\small{\text{$
z_{1,2}=\dfrac{7\pm\sqrt{49-4\cdot (-3)} } {2}
$}}\\\\
\small{\text{$
z_{1,2}=\dfrac{7\pm\sqrt{ 49+12 } } {2} = \dfrac{7\pm\sqrt{ 61 } } {2}
$}}\\\\
\small{\text{$
z_1 = \dfrac{7+\sqrt{ 61 } } {2} \qquad z_2 = \dfrac{7-\sqrt{ 61 } } {2}
$}}\\\\
\small{\text{$x = \pm \sqrt{z_{1,2}} $ }}\\\\
\small{\text{$x_1 = + \sqrt{z_{1}} = \sqrt{ \dfrac{7+\sqrt{ 61 } } {2} } $ }}\\\\
\small{\text{$x_2 = - \sqrt{z_{1}} = -\sqrt{ \dfrac{7+\sqrt{ 61 } } {2} } $ }}\\\\
\small{\text{$x_3 = + \sqrt{z_{2}} = \sqrt{ \dfrac{7-\sqrt{ 61 } } {2} } \qquad 7 - \sqrt{61} < 0 \quad ! \quad (non-real)
$ }}\\\\
\small{\text{$x_4 = - \sqrt{z_{2}} = -\sqrt{ \dfrac{7-\sqrt{ 61 } } {2} } \qquad 7 - \sqrt{61} < 0 \quad ! \quad (non-real)
$ }}\\\\$$

.
 Feb 20, 2015
 #1
avatar+101424 
+5

The y-intercept is (0, -3)

To find the x-intercepts, set the function to 0

x^4-7x^2-3 = 0      this will not factor....let's use the on-site solver

$${{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}}}}{{\sqrt{{\mathtt{2}}}}}}\\
{\mathtt{x}} = {\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}}}}{{\sqrt{{\mathtt{2}}}}}}\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,-\,}}{\mathtt{7}}}}{\mathtt{\,\times\,}}{i}}{{\sqrt{{\mathtt{2}}}}}}\\
{\mathtt{x}} = {\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,-\,}}{\mathtt{7}}}}{\mathtt{\,\times\,}}{i}}{{\sqrt{{\mathtt{2}}}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.721\: \!235\: \!902\: \!665\: \!060\: \!4}}\\
{\mathtt{x}} = {\mathtt{2.721\: \!235\: \!902\: \!665\: \!060\: \!4}}\\
{\mathtt{x}} = -{\mathtt{0.636\: \!494\: \!177\: \!470\: \!090\: \!6}}{i}\\
{\mathtt{x}} = {\mathtt{0.636\: \!494\: \!177\: \!470\: \!090\: \!6}}{i}\\
\end{array} \right\}$$

So....we have two "real" x intercepts and two "non-real" solutions......note....because of the symmetry of the solutions......... this graph is also symmetric to the origin   

This graph confirms this......https://www.desmos.com/calculator/xtuatwy6b7

 

 Feb 20, 2015
 #2
avatar+22358 
+10
Best Answer

How do I find the x-intercepts of  ?

$$\boxed{x^4-7x^2-3=0}\qquad
\small{\text{
we set $ z= x^2 $ with $\boxed{x=\sqrt{z}}
$}}\\\\
\small{\text{we have $ z^2-7z-3= 0 $}}\\\\
\small{\text{$
z_{1,2}=\dfrac{7\pm\sqrt{49-4\cdot (-3)} } {2}
$}}\\\\
\small{\text{$
z_{1,2}=\dfrac{7\pm\sqrt{ 49+12 } } {2} = \dfrac{7\pm\sqrt{ 61 } } {2}
$}}\\\\
\small{\text{$
z_1 = \dfrac{7+\sqrt{ 61 } } {2} \qquad z_2 = \dfrac{7-\sqrt{ 61 } } {2}
$}}\\\\
\small{\text{$x = \pm \sqrt{z_{1,2}} $ }}\\\\
\small{\text{$x_1 = + \sqrt{z_{1}} = \sqrt{ \dfrac{7+\sqrt{ 61 } } {2} } $ }}\\\\
\small{\text{$x_2 = - \sqrt{z_{1}} = -\sqrt{ \dfrac{7+\sqrt{ 61 } } {2} } $ }}\\\\
\small{\text{$x_3 = + \sqrt{z_{2}} = \sqrt{ \dfrac{7-\sqrt{ 61 } } {2} } \qquad 7 - \sqrt{61} < 0 \quad ! \quad (non-real)
$ }}\\\\
\small{\text{$x_4 = - \sqrt{z_{2}} = -\sqrt{ \dfrac{7-\sqrt{ 61 } } {2} } \qquad 7 - \sqrt{61} < 0 \quad ! \quad (non-real)
$ }}\\\\$$

heureka Feb 20, 2015

14 Online Users

avatar
avatar
avatar
avatar