limh→0f(x+h)−(x)h=limh→0cos(x+h)−cos(x)h=limh→0cosx∗cosh−sinx∗sinh−cos(x)h=limh→0cosx(cosh−1)−sinx∗sinhh=limh→0cosx(cosh−1)h−sinx∗sinhh=limh→0cosx∗(cosh−1)h−sinx∗sinhh=cosx∗0−sinx∗1=0−sin(x)=−sin(x)
If you need these proved that also be done
limh→0cosh−1h=0limh→0sinhh=1
.find using first principles the derivative of cosx
eiϕ=cos(ϕ)+isin(ϕ)
eiϕ=cos(ϕ)+isin(ϕ)|ddx
(eiϕ)′=ieiϕ=(cos(ϕ)+isin(ϕ))′=(cos(ϕ))′+i(sin(ϕ))′
ieiϕ=(cos(ϕ))′+i(sin(ϕ))′i(cos(ϕ)+isin(ϕ))=(cos(ϕ))′+i(sin(ϕ))′icos(ϕ)+i2⏟i2=−1sin(ϕ)=(cos(ϕ))′+i(sin(ϕ))′icos(ϕ)−sin(ϕ)=(cos(ϕ))′+i(sin(ϕ))′−sin(ϕ)+icos(ϕ)=(cos(ϕ))′+i(sin(ϕ))′(cos(ϕ))′=−sin(ϕ)(sin(ϕ))′=cos(ϕ)