+0  
 
0
123
2
avatar+644 

Find x if log_2 x^2 + log_1/2 x = 5.

waffles  Feb 22, 2018
Sort: 

2+0 Answers

 #1
avatar+86622 
+1

log2 x^2 + log 1/2 x   =  5

 

2 log2 x + log 1/2 x  =  5            use the change-of-base rule to write

 

2 [ log x / log 2]  +  log x / log (1/2)  =  5        { log (1/2)  =  log 2^(-1) }

 

2[log x ] / log 2 ] + log x / log 2^(-1) =  5

 

2[;og x / log 2 ] +  log x / -log 2  = 5

 

2 [ log x / log 2 ]  - logx/ log 2  = 5

 

[2logx - log x ] / log 2  = 5

 

log x/ log 2  = 5

 

log x  =  5log 2

 

log x  =  log 2^5

 

log x  = log 32

 

x  = 32

 

 

cool cool cool

CPhill  Feb 22, 2018
 #2
avatar
0

Solve for x:

(log(x^2))/log(2) - log(x)/log(2) = 5

 

Rewrite the left hand side by combining fractions. (log(x^2))/log(2) - log(x)/log(2) = (log(x^2) - log(x))/log(2):

(log(x^2) - log(x))/log(2) = 5

 

Multiply both sides by log(2):

log(x^2) - log(x) = 5 log(2)

 

log(x^2) - log(x) = log(1/x) + log(x^2) = log(x^2/x) = log(x):

log(x) = 5 log(2)

 

5 log(2) = log(2^5) = log(32):

log(x) = log(32)

 

Cancel logarithms by taking exp of both sides:

x = 32

Guest Feb 22, 2018

8 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy