+0  
 
0
435
1
avatar

Find the percentage of the area of a circle that is contained in an inscribed isosceles triangle, one of whose sides is the diameter of the circle 

 Feb 7, 2018
 #1
avatar+111401 
+1

The diameter will be the longest side of the triangle......If we let this   = 2r, the height of the triangle is r

 

So.... the area of the triangle  is  

 

(1/2)(2r) (r)   =  r^2

 

And the area of the circle is pi * r^2

 

So.....the ratio of the area is  

 

r^2  / [ pi * r^2 ]  =

 

1 / pi    ≈   31.8%

 

 

cool cool cool

 Feb 7, 2018

15 Online Users

avatar
avatar
avatar
avatar