You will have to use the Law of Cosines...and then the Law of Sines...calling the sides A, B and C and the angle beween sides A and B = θ = angle C
C^2 = A^2 + B^2 - 2(A)(B)cos [θ] rearrange
cos [θ] = [ A^2 - B^2 - C^2] / [ 2(A)(B)] = θ
Now......use the cosine inverse to find θ
arcos ( [ A^2 - B^2 - C^2] / [ 2(A)(B)] ) = θ = angle C
Now.....use the Law of Sines to find another angle.....
sin [angle C] /C = sin B / B rearrange
sin B = B* sin[angle C] / C
And B can be found using the sine inverse
arcsin [ B* sin[angle C] / C ] = angle B
And angle A = 180 - B - C