+0  
 
+1
740
4
avatar+53 

Hi there.

 

I was trying to solve the following question:

 

Part 1

        P2

 

I completed part (i), by showing that dy/dx is equal to the stated above.

 

However, when I attempted part (ii), I got only one coordinate (1, -2), (I equated dy/dx = -1).

 

How would I go about finding the other coordinate?

 

Thank you so much in advance,

bqrs01

 Mar 25, 2019
edited by bqrs01  Mar 25, 2019
edited by bqrs01  May 14, 2019
 #1
avatar+33659 
+4

Perhaps this graph will help:

 

 Mar 25, 2019
 #2
avatar+53 
+1

Thank you so much for your answer.

 

I have a further question, though. How would I determine this other coordinate if I didn't have access to a graph?

 

Is it possible though algebra alone? If so, could you please show me how? 

 

Thanks once again in advance,

bqrs01

bqrs01  Mar 25, 2019
edited by bqrs01  May 14, 2019
 #3
avatar+129849 
+1

x^2 + 2xy

________  =   -1

y^2  - x^2

 

 

x^2  + 2xy  =  -1 ( y^2 - x^2)

 

x^2 + 2xy   =  x^2 - y^2

 

2xy   =  -y^2

 

y^2 + 2xy = 0

 

y ( y + 2x)  =  0        set both factors to  0

 

y = 0      and subbing this into the original equation  produces  

 

x^3  =  3

 

x=  (3)^(1/3)

 

So...another  point  is  ( 3^(1/3) , 0 )

 

 

 

cool cool cool

 Mar 25, 2019
edited by CPhill  Mar 25, 2019
 #4
avatar+26387 
+2

I was trying to solve the following question:

\(\begin{array}{|rcll|} \hline x^2(x+3y)-y^3 &=& 3 \\ x^3 + 3x^2y-y^3 - 3 &=& 0 \\\\ \mathbf{f(x,y)} & \mathbf{=} & \mathbf{x^3 + 3x^2y-y^3 - 3} \\\\ \dfrac{\partial f} {\partial x} &=& 3x^2+6xy \\ \dfrac{\partial f} {\partial y} &=& 3x^2-3y^2 \\ && \boxed{\text{Formula: }\\ \dfrac{dy}{dx} = -\dfrac{\dfrac{\partial f} {\partial x}} {\dfrac{\partial f} {\partial y}} } \\ \dfrac{dy}{dx} &=& -\dfrac{ 3x^2+6xy } { 3x^2-3y^2 } \\\\ \dfrac{dy}{dx} &=& -\dfrac{ 3(x^2+2xy) } { 3(x^2-y^2) } \\\\ \dfrac{dy}{dx} &=& -\dfrac{ x^2+2xy } { x^2-y^2 } \\\\ \mathbf{ \dfrac{dy}{dx}} &\mathbf{=}& \mathbf{\dfrac{ x^2+2xy } { y^2-x^2 }} \\ \hline \end{array}\)

 

laugh

 Mar 26, 2019

4 Online Users

avatar