We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
145
2
avatar+38 

Find the derivative of the function by using the definition of the derivative.

f(x)=(x+1)/(x-1)

 

Thanks.

 Apr 3, 2019
 #1
avatar+104472 
+3

Find the derivative of the function by using the definition of the derivative.

f(x)=(x+1)/(x-1)

 

REMEMBER: The first derivative  IS  the gradient of the tangent to the curve

 

Basically when you find this from first principals you take the gradient of the secant.

I want the gradient of the tangent at (x,f(x))

So I have found the gradient of the SECANT  from  (x,f(x)) to the point   (x+c, f(x+c))

THEN I find the limit of this as c tends to 0

This limit will be  the gradient of the TANGENT at (x,f(x)).

 

 

In my case this is

    (That is not written technically at all)

 

This can be expressed in a couple of different ways.  This is one of them.

 

\(f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{f(x+c)-f(x)}{(x+c)-x}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{x+c+1}{x+c-1}-\frac{x+1}{x-1}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{(x+c+1)(x-1)}{(x+c-1)(x-1)}-\frac{(x+1)(x+c-1)}{(x-1)(x+c-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{(x+c+1)(x-1)-(x+1)(x+c-1)}{(x+c-1)(x-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{x(x+c+1)-1(x+c+1) -x(x+c-1)-1(x+c-1)}{(x+c-1)(x-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{2x-2(x+c) }{(x+c-1)(x-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{-2c}{(x+c-1)(x-1)}\times \frac{1}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{-2}{(x+c-1)(x-1)}\\ f'(x)=\frac{-2}{(x-1)^2} \)

 

 

Check using quotient rule.

 

f(x)=(x+1)/(x-1)

\(f(x)=\frac{(x+1)}{(x-1)}\\ f'(x)=\frac{(x-1)*1-(x+1)*1}{(x-1)^2}\\ f'(x)=\frac{-2}{(x-1)^2}\\\)

Great :)

 Apr 3, 2019
 #2
avatar+104472 
+1

I hope you take the time needed to actually learn from my answer  laugh

 Apr 3, 2019

24 Online Users