Find the derivative of the function by using the definition of the derivative.
f(x)=(x+1)/(x-1)
Thanks.
Find the derivative of the function by using the definition of the derivative.
f(x)=(x+1)/(x-1)
REMEMBER: The first derivative IS the gradient of the tangent to the curve
Basically when you find this from first principals you take the gradient of the secant.
I want the gradient of the tangent at (x,f(x))
So I have found the gradient of the SECANT from (x,f(x)) to the point (x+c, f(x+c))
THEN I find the limit of this as c tends to 0
This limit will be the gradient of the TANGENT at (x,f(x)).
In my case this is
(That is not written technically at all)
This can be expressed in a couple of different ways. This is one of them.
\(f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{f(x+c)-f(x)}{(x+c)-x}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{x+c+1}{x+c-1}-\frac{x+1}{x-1}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{(x+c+1)(x-1)}{(x+c-1)(x-1)}-\frac{(x+1)(x+c-1)}{(x-1)(x+c-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{(x+c+1)(x-1)-(x+1)(x+c-1)}{(x+c-1)(x-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{x(x+c+1)-1(x+c+1) -x(x+c-1)-1(x+c-1)}{(x+c-1)(x-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{\frac{2x-2(x+c) }{(x+c-1)(x-1)}}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{-2c}{(x+c-1)(x-1)}\times \frac{1}{c}\\ f'(x)=\displaystyle \lim _{c\rightarrow 0} \frac{-2}{(x+c-1)(x-1)}\\ f'(x)=\frac{-2}{(x-1)^2} \)
Check using quotient rule.
f(x)=(x+1)/(x-1)
\(f(x)=\frac{(x+1)}{(x-1)}\\ f'(x)=\frac{(x-1)*1-(x+1)*1}{(x-1)^2}\\ f'(x)=\frac{-2}{(x-1)^2}\\\)
Great :)