+0  
 
+1
3
1
avatar+5 

I understand the first part (2^4 is 1 mod 5), but how can you extend this to 2^2^2022?


\(2^4 \equiv 1 \pmod{5}\), so \(2^{2^{2022}} \equiv 1 \pmod{5}\)
 

 Oct 21, 2024
 #1
avatar+769 
0

You can use modular arithmetic.

 Oct 21, 2024

1 Online Users

avatar