Here is a drawing of what cos(x)= 1/2 really means:
We can find sin(x) just using the Pythagorean Theorem.
\((\frac12)^2+(\sin (x))^2=1^2 \\~\\ \mathbf{sin(x)}=\sqrt{1-\frac14}=\sqrt{\frac34}\mathbf{=\frac{\sqrt3}{2}}\)
tan = sin / cos, so...
tan(x) = sin(x) / cos(x) = \(\frac{\sqrt3}{2}\div\frac{1}{2}=\frac{\sqrt3}{2}\cdot\frac{2}{1}\mathbf{=\sqrt3}\)
Here is a drawing of what cos(x)= 1/2 really means:
We can find sin(x) just using the Pythagorean Theorem.
\((\frac12)^2+(\sin (x))^2=1^2 \\~\\ \mathbf{sin(x)}=\sqrt{1-\frac14}=\sqrt{\frac34}\mathbf{=\frac{\sqrt3}{2}}\)
tan = sin / cos, so...
tan(x) = sin(x) / cos(x) = \(\frac{\sqrt3}{2}\div\frac{1}{2}=\frac{\sqrt3}{2}\cdot\frac{2}{1}\mathbf{=\sqrt3}\)