+0  
 
0
772
4
avatar

if cos(x)=1/2, how do i find sin and tan?

Guest Apr 7, 2017

Best Answer 

 #1
avatar+7085 
+3

Here is a drawing of what cos(x)= 1/2 really means:

 

 

We can find sin(x) just using the Pythagorean Theorem.

 

\((\frac12)^2+(\sin (x))^2=1^2 \\~\\ \mathbf{sin(x)}=\sqrt{1-\frac14}=\sqrt{\frac34}\mathbf{=\frac{\sqrt3}{2}}\)

 

 

tan = sin / cos, so...

 

tan(x) = sin(x) / cos(x) = \(\frac{\sqrt3}{2}\div\frac{1}{2}=\frac{\sqrt3}{2}\cdot\frac{2}{1}\mathbf{=\sqrt3}\)

hectictar  Apr 8, 2017
edited by hectictar  Apr 8, 2017
 #1
avatar+7085 
+3
Best Answer

Here is a drawing of what cos(x)= 1/2 really means:

 

 

We can find sin(x) just using the Pythagorean Theorem.

 

\((\frac12)^2+(\sin (x))^2=1^2 \\~\\ \mathbf{sin(x)}=\sqrt{1-\frac14}=\sqrt{\frac34}\mathbf{=\frac{\sqrt3}{2}}\)

 

 

tan = sin / cos, so...

 

tan(x) = sin(x) / cos(x) = \(\frac{\sqrt3}{2}\div\frac{1}{2}=\frac{\sqrt3}{2}\cdot\frac{2}{1}\mathbf{=\sqrt3}\)

hectictar  Apr 8, 2017
edited by hectictar  Apr 8, 2017
 #2
avatar+86890 
+2

cos    = x / r      sin  = y / r   and tan  = y / x

 

We know x and r and we need to find y =  sqrt (r^2 - x^2)  = sqrt (2^2 - 1^2) =

sqrt (4 - 1)   =  sqrt (3)

 

So

 

sin (x)  = y/r =  sqrt (3) / 2       and tan (x) = y/x   =  sqrt (3)  / 1  = sqrt (3)

 

 

cool cool cool 

CPhill  Apr 8, 2017
 #3
avatar+2712 
0

sqrt3

tertre  Apr 8, 2017
 #4
avatar+310 
+2

You forgot a solution. If cos(x)=1/2 then sin(x)=(3/4)1/2 OR sin(x)=-(3/4)1/2

 

That means tan(x)=-(31/2) OR tan(x)=31/2

Ehrlich  Apr 8, 2017

21 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.