Find the derivative of the trig function.
f(t)=t2sint
\(\begin{array}{|rcll|} \hline \mathbf{f(t)} & \mathbf{=} & \mathbf{t^2\sin(t)} \\\\ f'(t) &=& t^2 * \dfrac{d\ \sin(t)}{dt}+ \dfrac{d\ t^2}{dt}*\sin(t) \\\\ && \dfrac{d\ \sin(t)}{dt} = \cos(t) \qquad \dfrac{d\ t^2}{dt}=2t \\\\ f'(t) &=& t^2 *\cos(t) +2t*\sin(t) \\ \mathbf{f'(t)} & \mathbf{=} & \mathbf{ t\Big(2\sin(t) +t\cos(t) \Big) } \\ \hline \end{array}\)