+0  
 
0
68
4
avatar+155 

Find the vertex of the graph of the equation y=-2x^2+8x-15.

 Mar 20, 2021
 #1
avatar
0

Complete the square on y = -2x^2 + 8x -15.

Then y = -2(x - 4)^2 + 17, so the vertex is (4,17).

 Mar 20, 2021
 #3
avatar+31046 
0

x coordinate =   - b/2a =  -  8/-4 =  2

   sub into equation to find y   coordinate     -2(2^2) + 8 (2) - 15 = -7                (2, -7)

ElectricPavlov  Mar 20, 2021
 #2
avatar+22016 
+2

y  =  -2x2 + 8x - 15

 

Move the '-15' term to the other side by adding 15 to both sides:

     y + 15  =  -2x2 + 8x

Factor out the '-2' term:

     y + 15  =  -2(x2 - 4x)

Complete the square of x2 - 4x     --->     x2 - 4x + 4

Notice that the '4' will be on the inside of the factor, so really, it is a '-8':

     y = 15 - 8  =  -2(x2 - 4x + 4)

Finishing:

     y + 7  =  -2(x - 2)2

The vertex occurs at (2, -7)

 Mar 20, 2021
 #4
avatar+117787 
+1

We  have  the form   y = ax^2  + bx  + c

 

The  x coordinate of the  vertex  occurs  at  - b / (2a)  =  -8/ ( 2 *-2)  =  -8 / -4  = 2

 

To find the y coordinate...put x  back into  the function

 

y= -2(2)^2  + 8(2)  -15  =    -8  + 16  - 15 =  -7

 

cool cool cool

 Mar 20, 2021

35 Online Users

avatar
avatar
avatar
avatar
avatar