We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
71
1
avatar

These are the steps that i was told to follow however at the end i can only come up with a general solution with unknown variables please help thank you

 Sep 16, 2019

Best Answer 

 #1
avatar+6045 
+1

\(\dfrac{dy}{dx}+y = \sin(2x)\\ a=1,~b=1,~f(x)=\sin(2x)\\ y_{cf} = Ae^{-\frac b a x}=A e^{-x}\\ \text{try $y_{pt} = B\sin(2x) + C\cos(2x)$}\\ 2B\cos(2x) - 2C \sin(2x) + B\sin(2x)+C\cos(2x) = \sin(2x)\\ 2B+C = 0\\ B-2C = 1\\ 5B = 1\\ B=\dfrac 1 5,~C = -\dfrac 2 5\\ y = y_{cf}+y_{pt} = A e^{-x} + \dfrac 1 2 \left(\sin(2x)-2\cos(2x)\right)\)

.
 Sep 16, 2019
 #1
avatar+6045 
+1
Best Answer

\(\dfrac{dy}{dx}+y = \sin(2x)\\ a=1,~b=1,~f(x)=\sin(2x)\\ y_{cf} = Ae^{-\frac b a x}=A e^{-x}\\ \text{try $y_{pt} = B\sin(2x) + C\cos(2x)$}\\ 2B\cos(2x) - 2C \sin(2x) + B\sin(2x)+C\cos(2x) = \sin(2x)\\ 2B+C = 0\\ B-2C = 1\\ 5B = 1\\ B=\dfrac 1 5,~C = -\dfrac 2 5\\ y = y_{cf}+y_{pt} = A e^{-x} + \dfrac 1 2 \left(\sin(2x)-2\cos(2x)\right)\)

Rom Sep 16, 2019

11 Online Users

avatar