use first principal to find the derivative of
f(x)=sin^2(2x)
\(f(x)=sin^2(2x)\)
Note that :
sin^2(2x) = [1 - cos(4x)]/ 2 ......so we have.....
[ 1 - cos4(x + h)] / 2] * [ 1/h] - [1 - cos(4x)] / 2 * [ 1/h ] =
[1 - cos(4x + cos4h)] / 2h - [1 - cos(4x)] 2h =
[cos(4x) - cos(4x + 4h) ] / 2h =
[ cos(4x) - [cos4xcos4h - sin4xsin4h] ] / 2h =
[ cos4x ][1 - cos4h] / 2h + sin4xsin4h/ 2h [multiply top/bottom of both fractions by 2]
[2cos4x] [(1 - cos4h) / 4h ] + [2sin4x] [sin4h/ 4h ] let h → 0
[2cosx * 0] + [2sin4x * 1 ] =
2sin4x =
2sin(2x + 2x) =
2[ sin2xcos2x + sin2xcos2x] =
2 [ 2 * sin2xcos2x] =
4[sin2x] [cos2x]
-------------------------------------------------------------------------
Note that : [sin(2x)]^2 = [sin2x ] * [sin2x] (1)
And using the Product Rule, the derivative of (1) =
[2cos2x] [sin2x] + [sin2x][ 2 cos2x] =
[2cos2x] [ sin2x + sin2x] =
[2cos2x] [2sin2x] =
4[sin2x][cos2x]
Find the derivative of the following via implicit differentiation:
d/dx(f(x)) = d/dx(sin^2(2 x))
The derivative of f(x) is f'(x):
f'(x) = d/dx(sin^2(2 x))
Using the chain rule, d/dx(sin^2(2 x)) = ( du^2)/( du) ( du)/( dx), where u = sin(2 x) and ( d)/( du)(u^2) = 2 u:
f'(x) = 2 d/dx(sin(2 x)) sin(2 x)
Using the chain rule, d/dx(sin(2 x)) = ( dsin(u))/( du) ( du)/( dx), where u = 2 x and ( d)/( du)(sin(u)) = cos(u):
f'(x) = cos(2 x) d/dx(2 x) 2 sin(2 x)
Factor out constants:
f'(x) = 2 d/dx(x) 2 cos(2 x) sin(2 x)
Simplify the expression:
f'(x) = 4 cos(2 x) (d/dx(x)) sin(2 x)
The derivative of x is 1:
f'(x) = 1 4 cos(2 x) sin(2 x)
Simplify the expression:
f'(x) = 4 cos(2 x) sin(2 x)
Expand the left hand side:
Answer: |f'(x) = 4 cos(2x) sin(2x) =f'(x) = 2 sin(4x)
Note that :
sin^2(2x) = [1 - cos(4x)]/ 2 ......so we have.....
[ 1 - cos4(x + h)] / 2] * [ 1/h] - [1 - cos(4x)] / 2 * [ 1/h ] =
[1 - cos(4x + cos4h)] / 2h - [1 - cos(4x)] 2h =
[cos(4x) - cos(4x + 4h) ] / 2h =
[ cos(4x) - [cos4xcos4h - sin4xsin4h] ] / 2h =
[ cos4x ][1 - cos4h] / 2h + sin4xsin4h/ 2h [multiply top/bottom of both fractions by 2]
[2cos4x] [(1 - cos4h) / 4h ] + [2sin4x] [sin4h/ 4h ] let h → 0
[2cosx * 0] + [2sin4x * 1 ] =
2sin4x =
2sin(2x + 2x) =
2[ sin2xcos2x + sin2xcos2x] =
2 [ 2 * sin2xcos2x] =
4[sin2x] [cos2x]
-------------------------------------------------------------------------
Note that : [sin(2x)]^2 = [sin2x ] * [sin2x] (1)
And using the Product Rule, the derivative of (1) =
[2cos2x] [sin2x] + [sin2x][ 2 cos2x] =
[2cos2x] [ sin2x + sin2x] =
[2cos2x] [2sin2x] =
4[sin2x][cos2x]