+0  
 
0
864
1
avatar+288 

Let \(f(x) = \lfloor x \lfloor x \rfloor \rfloor \) for \(x \ge 0.\)

 

(a) Find all \(x \ge 0\) such that \(f(x)= 1.\)

 

(b) Find all \(x \ge 0\) such that \(f(x)=3.\)

 

(c) Find all \(x \ge 0\) such that \(f(x)=5.\)

 

(d) Find the number of possible values of \(f(x)\) for \(0 \le x \le 10\)

 

Hint: Divide into cases, based on the value of \(\lfloor x \rfloor. \)

 

-------------Thanks! laughcheekycool

 

(Note that (a), (b) and (c) are subquestions that lead up to the "total question," (d).)

 Jun 12, 2020
 #1
avatar
0

This is so easy!  Like, for (a), x = 1.  You can figure out the rest.

 Jun 12, 2020

0 Online Users