+0  
 
0
110
1
avatar

How many values of r are there such that $\lfloor r/4 \rfloor + r = 15.5?$

 May 10, 2022
 #1
avatar+9461 
0

Moving r to the other side gives \(\left\lfloor\dfrac r4\right\rfloor = 15.5 -r \).

 

Then 15.5 - r is an integer. Then r = k + 0.5 for some integer k.

 

Then \(\left\lfloor\dfrac {k + \frac12}4\right\rfloor = 15 - k\).

 

That means \(15-k\leq \dfrac{k + \frac12}4 < 16 - k\) by definition of floor function. Now it becomes a compound inequality. To proceed, solve the compound inequality and list its integer solutions.

 May 10, 2022

12 Online Users

avatar