+0  
 
0
578
2
avatar+1307 

For a certain value of k, the system

x + y + 3z = 10,

-4x + 2y +5z = 7,

k*x + z = 3

has no solutions. What is this value of k?

AWESOMEEE  Aug 11, 2015

Best Answer 

 #1
avatar+17745 
+10

The third equation has no y-term, so let's eliminate the y-term from the combination of the first two equations.

x + y + 3z  =  10     --->     x -2     --->     -2x - 2y - 6z  =  -20

-4x + 2y + 5z  =  7       --->                      -4x + 2y + 5z  =  7

Add down the columns:                             -6x - z  =  -13   

Since  kx + z  =  3        --->         z  =  3 - kx

Substituting these:        -6x - (3 - kx)  =  -13

                                    -6x - 3 + kx  =  -13

                                      6x + 3 - kx  =  13

                                          6x - kx  =  10

                                          x(6 - k)  =  10

If  6 - k  =  0,  there is no value for x that will result in a product of 10,

so  k = 6  results in no possible solution.

For every other value of k, there will be a value of x that can produce a product of 10.

geno3141  Aug 12, 2015
 #1
avatar+17745 
+10
Best Answer

The third equation has no y-term, so let's eliminate the y-term from the combination of the first two equations.

x + y + 3z  =  10     --->     x -2     --->     -2x - 2y - 6z  =  -20

-4x + 2y + 5z  =  7       --->                      -4x + 2y + 5z  =  7

Add down the columns:                             -6x - z  =  -13   

Since  kx + z  =  3        --->         z  =  3 - kx

Substituting these:        -6x - (3 - kx)  =  -13

                                    -6x - 3 + kx  =  -13

                                      6x + 3 - kx  =  13

                                          6x - kx  =  10

                                          x(6 - k)  =  10

If  6 - k  =  0,  there is no value for x that will result in a product of 10,

so  k = 6  results in no possible solution.

For every other value of k, there will be a value of x that can produce a product of 10.

geno3141  Aug 12, 2015
 #2
avatar+89803 
+5

 

 

Here's another way to tackle this one - although I still probably like geno's method better !!!!

 

Get y by itself in the first equation

 

x + y + 3z = 10      →   y =  10 - x - 3z

 

Substitute this into the second equation and simplify:

 

-4x + 2y +5z = 7    →   -4x + 2(10 - x - 3z) + 5z = 7   →   -4x + 20 -2x - 6z + 5z  = 7  →  -6x - z = -13  →

 

6x + z  = 13

 

So we have this system:

 

k*x + z = 3

 

6x + z = 13 

 

And notice that, if k =6, we would have this system:

 

6x + z  = 3      and

 

6x + z  = 13       but this is impossible, because two things added together can't possibly have two different outcomes 

 

So....as geno found, when k = 6, the system has no solution...!!!

 

 

  

CPhill  Aug 12, 2015

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.