We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
142
3
avatar

   For a triangle XYZ, we use [XYZ] to denote its area.

Let ABCD be a square with side length 1. Points E and F lie on line BC and line CD, respectively, in such a way that angle EAF=45 degrees If [CEF]=1/9, what is the value of [AEF].

 Sep 16, 2019
 #1
avatar+23324 
+2

For a triangle XYZ, we use [XYZ] to denote its area.
Let ABCD be a square with side length 1.
Points E and F lie on line BC and line CD, respectively, in such a way that angle EAF=45 degrees
If [CEF]=1/9, what is the value of [AEF].

 

 

\(\text{Let $CE=x$ } \\ \text{Let $BE=1-x$ } \\ \text{Let $CF=y$ } \\ \text{Let $DF=1-y$ } \\ \text{Let $AB=AD=1$ }\)

 

\(\begin{array}{|lrcll|} \hline & [CEF] = \dfrac{xy}{2} &=& \dfrac{1}{9} \\\\ \text{or}& xy &=& \dfrac{2}{9} \\\\ \text{or}& y &=& \dfrac{2}{9x} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline &[AEF] &=& [ABCD] - [CEF]-[ABE]-[ADF] \\\\ &[AEF] &=& 1 - \dfrac{xy}{2}-\dfrac{(1-x)}{2}-\dfrac{(1-y)}{2} \quad | \quad \cdot 2 \\\\ &2[AEF] &=& 2 - xy- (1-x)-(1-y) \\ &2[AEF] &=& 2 - xy- 1+x-1+y \\ (1) &\mathbf{2[AEF]} &=& \mathbf{(x+y) - xy} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline &2[AEF] &=& AE\cdot AF\cdot \sin(45^\circ) \quad | \quad AE=\sqrt{1^2+(1-x)^2},\ AF=\sqrt{1^2+(1-y)^2} \\\\ &2[AEF] &=& \sqrt{1^2+(1-x)^2}\sqrt{1^2+(1-y)^2} \sin(45^\circ) \quad | \quad \sin(45^\circ) = \dfrac{\sqrt{2}} {2} \\\\ (2) &\mathbf{2[AEF]} &=& \mathbf{\sqrt{1^2+(1-x)^2}\sqrt{1^2+(1-y)^2}\cdot \dfrac{\sqrt{2}} {2} } \\ \hline \end{array}\)

 

(1) = (2):

\(\small{ \begin{array}{|rcll|} \hline \mathbf{(x+y) - xy} &=& \mathbf{\sqrt{1^2+(1-x)^2}\sqrt{1^2+(1-y)^2}\cdot \dfrac{\sqrt{2}} {2} } \quad | \quad \text{square both sides} \\\\ \Big((x+y) - xy\Big)^2 &=& \left(\sqrt{1^2+(1-x)^2}\sqrt{1^2+(1-y)^2}\cdot \dfrac{\sqrt{2}} {2} \right)^2 \\\\ \Big((x+y) - xy\Big)^2 &=& \left(1^2+(1-x)^2 \right) \left(1^2+(1-y)^2 \right)\cdot \dfrac{1} {2} \\\\ 2\Big((x+y) - xy\Big)^2 &=& \left(1^2+(1-x)^2 \right) \left(1^2+(1-y)^2 \right) \\ 2\Big( (x+y)^2-2(x+y)xy+x^2y^2 \Big) &=& 1+(1-y)^2+(1-x)^2+(1-x)^2(1-y)^2 \\ 2\Big( x^2+y^2 +2xy-2(x+y)xy+x^2y^2 \Big) &=& 1+1-2y+y^2+1-2x+x^2+(1-2x+x^2)(1-2y+y^2) \\ 2x^2+2y^2 +4xy-4(x+y)xy+2x^2y^2 &=& 3-2y+y^2-2x+x^2+1-2y+y^2 -2x+4xy-2xyy +x^2-2xyx+x^2y^2 \\ -4(x+y)xy+2x^2y^2 &=& 4-2y -2x -2y -2x -2xyy -2xyx+x^2y^2 \\ -4(x+y)xy+2x^2y^2 &=& 4-4(x+y) -2xy(x+y)+x^2y^2 \\ 4(x+y)-4xy(x+y)+2xy(x+y)+x^2y^2-4&=& 0 \\ (x+y)(4-4xy+2xy)+x^2y^2-4 &=& 0 \\ (x+y)(4-2xy)+x^2y^2-4 &=& 0 \quad | \quad y = \dfrac{2}{9x} \\ (x+\dfrac{2}{9x})(4-2xy)+x^2y^2-4 &=& 0 \\ \left(\dfrac{9x^2+2}{9x}\right)(4-2xy)+x^2y^2-4 &=& 0 \quad | \quad \cdot 9x \\\\ (9x^2+2)(4-2xy)+ 9x(x^2y^2-4) &=& 0 \quad | \quad \cdot 9x \\ 9x^2(4-2xy)+9x(x^2y^2-4)+2(4-2xy)&=& 0 \quad | \quad xy = \dfrac{2}{9} \\ 9x^2(4-\dfrac{4}{9})+9x(\dfrac{4}{81}-4)+2(4-\dfrac{4}{9})&=& 0 \\ 9x^2(\dfrac{36-4}{9})+9x(\dfrac{-320}{81})+2(\dfrac{36-4}{9})&=& 0 \\ 9x^2(\dfrac{32}{9})-x(\dfrac{-320}{9})+2(\dfrac{32}{9})&=& 0 \\ 32x^2-\dfrac{320}{9}x+ \dfrac{64}{9} &=& 0 \quad | \quad \cdot 9 \\ 288x^2-320x+64&=& 0 \quad | \quad :4 \\ \mathbf{ 72x^2-80x+16 } &=& \mathbf{0} \\ \hline \end{array} }\)

 

\(\begin{array}{|lrcll|} \hline & \mathbf{ 72x^2-80x+16 } &=& \mathbf{0} \\ & x &=& \dfrac{5}{9} + \dfrac{\sqrt{7}}{9} \\ \text{or}& x &=& \dfrac{5}{9} - \dfrac{\sqrt{7}}{9} \\\\ & y &=& \dfrac{5}{9} - \dfrac{\sqrt{7}}{9} \\ \text{or}& y &=& \dfrac{5}{9} + \dfrac{\sqrt{7}}{9} \\\\ & 2[AEF] &=& (x+y) -xy \\ & 2[AEF] &=& \left(\dfrac{5}{9} + \dfrac{\sqrt{7}}{9}+\dfrac{5}{9} - \dfrac{\sqrt{7}}{9} \right) - \left(\dfrac{5}{9} + \dfrac{\sqrt{7}}{9}\right) \left(\dfrac{5}{9} - \dfrac{\sqrt{7}}{9}\right) \\ & 2[AEF] &=& \dfrac{10}{9} - \left(\dfrac{5^2}{9^2} - \dfrac{(\sqrt{7})^2}{9^2}\right) \\ & 2[AEF] &=& \dfrac{10}{9} - \dfrac{2}{9} \\ & 2[AEF] &=& \dfrac{8}{9} \\ & \mathbf{ [AEF] } &=& \mathbf{ \dfrac{4}{9} } \\ \hline \end{array}\)

 

laugh

 Sep 16, 2019
edited by heureka  Sep 17, 2019
edited by heureka  Sep 17, 2019
 #2
avatar+104911 
+2

Very nice, heureka!!!

 

I want to look at this one, again......!!!

 

 

 

cool cool cool

 Sep 16, 2019
 #3
avatar+23324 
+2

Thank you, CPhill !

 

laugh

heureka  Sep 17, 2019

16 Online Users

avatar