+0  
 
0
798
2
avatar+96 

For the following geometric sequence, find a 10.

 

1, 1/3, 1/9, 1/27

 Oct 28, 2015

Best Answer 

 #1
avatar+26387 
+30

For the following geometric sequence, find a 10.

1, 1/3, 1/9, 1/27

 

\(a_1=1 \\ a_2=\frac13 \\ a_3=\frac19 \\ a_4=\frac{1}{27} \\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r=\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r=\frac{ \frac{1}{27}}{ \frac19 }=\frac{ \frac19 }{ \frac13 }=\frac{ \frac13 }{ 1 }\\ r=\frac{9}{27}=\frac{ 3 }{9 }=\frac13\\ r=\frac{1}{3}=\frac{ 1 }{3}=\frac13\\ \mathbf{r=\frac13}\)

 

\(\boxed{~ a_n = a_1\cdot r^{n-1} ~}\\ a_1 = 1\cdot \left( \frac13 \right)^{1-1} = 1\\ a_2 = 1\cdot \left( \frac13 \right)^{2-1} = 1\cdot \frac13= \frac13\\ a_3 = 1\cdot \left( \frac13 \right)^{3-1} = 1\cdot \left( \frac13 \right)^2 = \frac19\\ a_4 = 1\cdot \left( \frac13 \right)^{4-1} = 1\cdot \left( \frac13 \right)^3 = \frac{1}{27}\\ \dots \\ a_{10} = 1\cdot \left( \frac13 \right)^{10-1} = 1\cdot \left( \frac13 \right)^9 = \frac{1}{19683}\\ \mathbf{a_{10} = \frac{1}{19683}}\\\)

laugh

 Oct 28, 2015
edited by heureka  Oct 28, 2015
 #1
avatar+26387 
+30
Best Answer

For the following geometric sequence, find a 10.

1, 1/3, 1/9, 1/27

 

\(a_1=1 \\ a_2=\frac13 \\ a_3=\frac19 \\ a_4=\frac{1}{27} \\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r=\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r=\frac{ \frac{1}{27}}{ \frac19 }=\frac{ \frac19 }{ \frac13 }=\frac{ \frac13 }{ 1 }\\ r=\frac{9}{27}=\frac{ 3 }{9 }=\frac13\\ r=\frac{1}{3}=\frac{ 1 }{3}=\frac13\\ \mathbf{r=\frac13}\)

 

\(\boxed{~ a_n = a_1\cdot r^{n-1} ~}\\ a_1 = 1\cdot \left( \frac13 \right)^{1-1} = 1\\ a_2 = 1\cdot \left( \frac13 \right)^{2-1} = 1\cdot \frac13= \frac13\\ a_3 = 1\cdot \left( \frac13 \right)^{3-1} = 1\cdot \left( \frac13 \right)^2 = \frac19\\ a_4 = 1\cdot \left( \frac13 \right)^{4-1} = 1\cdot \left( \frac13 \right)^3 = \frac{1}{27}\\ \dots \\ a_{10} = 1\cdot \left( \frac13 \right)^{10-1} = 1\cdot \left( \frac13 \right)^9 = \frac{1}{19683}\\ \mathbf{a_{10} = \frac{1}{19683}}\\\)

laugh

heureka Oct 28, 2015
edited by heureka  Oct 28, 2015
 #2
avatar+129845 
+5

Notice that each successive term is 1/3 as large as the previous one.....so.....the common ratio = 1/3

 

And the "formula" for the nth term is just  (1/3)n-1

 

So....the tenth term is :  (1/3)(10 - 1)  = (1/3)9 = 1 / 19683

 

 

cool cool cool

 Oct 28, 2015

1 Online Users