+0  
 
0
1324
1
avatar+13 

For the Function g(x)=x^2/3

Show that g'(0) does not exist...

 

also,If derivate at x=0 does not exist, this means the tangent line is a __________line.

 Sep 16, 2016
 #1
avatar+37152 
+5

g'(x) = 2/3 x^(2/3-1) = 2/3 x^(-1/3) = 2/3  *  1/ (x^1/3)  =  2 / (3\(\sqrt[3]{x}\) )

 

if 'x' is ZERO it is undefined....or NOT ALLOWED  (You cannot divide by zero)

 

this means that the tangent line is a     hyperbolic or discontiguous   line    ?

 Sep 16, 2016

4 Online Users