+0  
 
0
1068
2
avatar

for which equation is (5,1215) a solution

 Apr 30, 2015

Best Answer 

 #2
avatar+118677 
+5

$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{115.162\: \!049}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\mathtt{11\,243}}}{{\mathtt{2\,000}}}}\\
{\mathtt{x}} = {\frac{{\mathtt{10\,243}}}{{\mathtt{2\,000}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{5.621\: \!5}}\\
{\mathtt{x}} = {\mathtt{5.121\: \!5}}\\
\end{array} \right\}$$

 

Well if that is a decimal point in the question then you answer is definitely correct. :)

Thanks Einstein.

 

an easier answer might have been 

x-0.1215=5     

 Apr 30, 2015
 #1
avatar+870 
+5

4x²+2x-115.162049=0

 Apr 30, 2015
 #2
avatar+118677 
+5
Best Answer

$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{115.162\: \!049}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\mathtt{11\,243}}}{{\mathtt{2\,000}}}}\\
{\mathtt{x}} = {\frac{{\mathtt{10\,243}}}{{\mathtt{2\,000}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{5.621\: \!5}}\\
{\mathtt{x}} = {\mathtt{5.121\: \!5}}\\
\end{array} \right\}$$

 

Well if that is a decimal point in the question then you answer is definitely correct. :)

Thanks Einstein.

 

an easier answer might have been 

x-0.1215=5     

Melody Apr 30, 2015

2 Online Users

avatar
avatar