Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
7320
5
avatar+1836 

Four positive integers $a$$b$$c$, and $d$ satisfy
\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}
and $abcd=8!$.

What is $a - d$?

 

(b) In Part a of this problem, you found the values of integers that satisfied the system of equations. In this part of the problem you will write up a full solution that describes how to solve this problem.

Four positive integers $a$$b$$c$, and $d$ satisfy
\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}
and $abcd=8!$.

What are $a$$b$$c$, and $d?$

 Jul 7, 2015

Best Answer 

 #1
avatar+118703 
+20

Four positive integers a, b, c, d satisfy

 

 

ab+a+b = 524 

bc+b+c = 146 

cd+c+d = 104 

abcd = 8! = 273275

 

What is   a-d ?


----------------------------------------

 

Can    a,b,c or d   be odd?

Assume a is odd

Let a=2N+1

(2N+1)b+(2N+1)+b=524

2Nb+b+2N+1+b=524

2Nb+2b+2N=523

2(2Nb+b+N)=523

Since N and b are integers there is a contradiction here.

Therefore a is even

By the same logic b,c and d are all even and therefore all are divisible by 2.

 

Let 2A=a,   2B=b,     2C=c,    2D=d

 

The equations become

 

2AB+A+B=262      It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73        It can be seen that B+C is odd      therefore with B & D one is odd and one is even

2CD+C+D=52        It can be seen that C+D is even    therefore C and D are both odd or both even

 

This means that the powers of 2 must be shared into two bundles.

They belong either to A and B          or              to    C and D

 ABCD=233275

 

-----------------------

 

Can A,B,C, OR D  be 1 ?

Assume A=1

2B+1+B=262

3B=261

B=87 = 3*29  no that is impossible so   B1    and using the same logic   A1

 

Assume C=1

2D+1+D=52

3D=51

D=17     again that is impossible so  c1   and using the same logic   D1

 

--------------------------

 

 

 

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore with B & D one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

ABCD=233275 

 

 

Can A,B,C, OR D  be 2 ?

Assume A=2

4B+2+B=262

5B=260

B=52=2^2*13      no that is impossible so   A2   and using the same logic   B2

 

Assume C=2

4D+2+D=52

5D=50

D=10      That is possible – so maybe C=2 and D=10   OR    D=2 and C=10

 

If D=2 then C=10

20B+B+10=73

21B=63

B=3

If B=3  then

6A+A+3=262

7A=259

A=37     That is impossible      so            D2B3C10    

 

If C=2  then D=10

4B+B+2=73

5B=71     That is impossible       so           D10C2       

 

So none of A,B,C,D are 1 or 2

 

 

  ABCD=233275              (A and B are paired) (C and D are paired)

So one of the even numbers is 2 * some other factor

And the one belonging to the matching pair must be 4 or 4 times some other factor

 

-----------------------------------------------------------------

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore B, D  one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

ABCD=233275 

 

One pair has to have factors just from 3,3,5 and 7 and not all of these can be used because at least of of them belongs with a 2

( This is a total of 12-2=10 factors )

 

Possible odd numbers         3, 5, 7, 9, 15, 21, 35, 45, 63, 105                 1 and 3*3*5 are not included

 

Visual scan of these  (Note that A,B,C, and D are all 3 or bigger)

[Example of scanning method 45*6=270    and 270>262 so 45 is definitely too big]

105, 63 and 45 are all too big to be any of them.

35, 21, 15, can be A but not B or C or D

9 could be B or A

3 or 5 or 7 could be any of them.

Remember:  (A and B are paired) (C and D are paired)

 

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore B, D  one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

 

 

So

If C and D are the odd ones then they must be two of  3, 5 or 7

 

Let’s see if 3 and 5 of those work.

2CD+C+D=52        

2*3*5+3+5=38   Nope that doesn’t work so

 

Lets see if 3 and 7 work

2*3*7+3+7=52        BINGO

SO  

C and D could be 3 and 7

 

 

Could it work if C and D are the even ones?

Let C=2X     and D=2Y

2CD+C+D=52        

8XY+2X+2Y=52

4XY+X+Y=26

Possibilities for X and Y are  products of  2,3,3,7,5

If they were 2 and 3 we’d have   4*2*3+2+3=29

No it doesn’t work - there aren’t any smaller ones so    C and D must be 3 and 7

 

 

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore B, D  one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

 

If C=3 then

2*B*3+B+3=73

7B=70

B=10      that looks promising

 

If C=7 then

2*B*7+B+7=73

15B=66         Well, that is not right.

 

So    C=3, D=7, and B=10

 

2*A*10+A+10=262

21A = 252

A=12

 

 

So             A=12,     B=10,    C=3,   and   D=7

 

So            a=24,     b=20,    c=6      and     d=14

 

So             a-d =  24-14 = 10

 Jul 8, 2015
 #1
avatar+118703 
+20
Best Answer

Four positive integers a, b, c, d satisfy

 

 

ab+a+b = 524 

bc+b+c = 146 

cd+c+d = 104 

abcd = 8! = 273275

 

What is   a-d ?


----------------------------------------

 

Can    a,b,c or d   be odd?

Assume a is odd

Let a=2N+1

(2N+1)b+(2N+1)+b=524

2Nb+b+2N+1+b=524

2Nb+2b+2N=523

2(2Nb+b+N)=523

Since N and b are integers there is a contradiction here.

Therefore a is even

By the same logic b,c and d are all even and therefore all are divisible by 2.

 

Let 2A=a,   2B=b,     2C=c,    2D=d

 

The equations become

 

2AB+A+B=262      It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73        It can be seen that B+C is odd      therefore with B & D one is odd and one is even

2CD+C+D=52        It can be seen that C+D is even    therefore C and D are both odd or both even

 

This means that the powers of 2 must be shared into two bundles.

They belong either to A and B          or              to    C and D

 ABCD=233275

 

-----------------------

 

Can A,B,C, OR D  be 1 ?

Assume A=1

2B+1+B=262

3B=261

B=87 = 3*29  no that is impossible so   B1    and using the same logic   A1

 

Assume C=1

2D+1+D=52

3D=51

D=17     again that is impossible so  c1   and using the same logic   D1

 

--------------------------

 

 

 

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore with B & D one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

ABCD=233275 

 

 

Can A,B,C, OR D  be 2 ?

Assume A=2

4B+2+B=262

5B=260

B=52=2^2*13      no that is impossible so   A2   and using the same logic   B2

 

Assume C=2

4D+2+D=52

5D=50

D=10      That is possible – so maybe C=2 and D=10   OR    D=2 and C=10

 

If D=2 then C=10

20B+B+10=73

21B=63

B=3

If B=3  then

6A+A+3=262

7A=259

A=37     That is impossible      so            D2B3C10    

 

If C=2  then D=10

4B+B+2=73

5B=71     That is impossible       so           D10C2       

 

So none of A,B,C,D are 1 or 2

 

 

  ABCD=233275              (A and B are paired) (C and D are paired)

So one of the even numbers is 2 * some other factor

And the one belonging to the matching pair must be 4 or 4 times some other factor

 

-----------------------------------------------------------------

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore B, D  one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

ABCD=233275 

 

One pair has to have factors just from 3,3,5 and 7 and not all of these can be used because at least of of them belongs with a 2

( This is a total of 12-2=10 factors )

 

Possible odd numbers         3, 5, 7, 9, 15, 21, 35, 45, 63, 105                 1 and 3*3*5 are not included

 

Visual scan of these  (Note that A,B,C, and D are all 3 or bigger)

[Example of scanning method 45*6=270    and 270>262 so 45 is definitely too big]

105, 63 and 45 are all too big to be any of them.

35, 21, 15, can be A but not B or C or D

9 could be B or A

3 or 5 or 7 could be any of them.

Remember:  (A and B are paired) (C and D are paired)

 

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore B, D  one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

 

 

So

If C and D are the odd ones then they must be two of  3, 5 or 7

 

Let’s see if 3 and 5 of those work.

2CD+C+D=52        

2*3*5+3+5=38   Nope that doesn’t work so

 

Lets see if 3 and 7 work

2*3*7+3+7=52        BINGO

SO  

C and D could be 3 and 7

 

 

Could it work if C and D are the even ones?

Let C=2X     and D=2Y

2CD+C+D=52        

8XY+2X+2Y=52

4XY+X+Y=26

Possibilities for X and Y are  products of  2,3,3,7,5

If they were 2 and 3 we’d have   4*2*3+2+3=29

No it doesn’t work - there aren’t any smaller ones so    C and D must be 3 and 7

 

 

 

2AB+A+B=262       It can be seen that A+B is even     therefore A and B are both odd or both even

2BC+B+C=73         It can be seen that B+C is odd      therefore B, D  one is odd and one is even

2CD+C+D=52         It can be seen that C+D is even    therefore C and D are both odd or both even

 

If C=3 then

2*B*3+B+3=73

7B=70

B=10      that looks promising

 

If C=7 then

2*B*7+B+7=73

15B=66         Well, that is not right.

 

So    C=3, D=7, and B=10

 

2*A*10+A+10=262

21A = 252

A=12

 

 

So             A=12,     B=10,    C=3,   and   D=7

 

So            a=24,     b=20,    c=6      and     d=14

 

So             a-d =  24-14 = 10

Melody Jul 8, 2015
 #2
avatar+26397 
+15

Four positive integers $a$$b$$c$, and $d$ satisfy
\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}
and $abcd=8!$.

 

I. We calculate a:

(1)ab+a+b=524b(1+a)+a=524b=524a1+a(2)bc+b+c=146b(1+c)+c=146b=146c1+c(1)=(2)b=524a1+a=146c1+c524a1+a=146c1+c(1+c)(524a)=(1+a)(146c)(524a)+c(524a)=146(1+a)c(1+a)c(524a+1+a)=146(1+a)(524a)c525=146(1+a)524+ac525=146+146a524+ac525=378+147ac525=378+147ac=0.72+0.28a|2525c=18+7a25c+7a=18

 

First we have find the solution for -25c + 7a = -1. And then we can multiply by (-18)

There is only a solution when gcd( -25,7) = -1 or in other words -25 and 7 are relatively prime.

(gcd = greatest common divisor)

 

Using the Euclidian algorithm to calcutate gcd(-25,7)

qr25734741343113130

 

The greatest common divisor gcd(-25,7) =1

 

Using Extended Euclidean algorithm to calculate the first solution

  qrca2573421(3)(2)=7741311(1)1=2431110(1)1=131300031=1
 
The first solution a0 and c0: -25c + 7a = -1
 
25(2)+7(7)=1|(18)25[2(18)]+7[7(18)]=1825(36)+7(126)=18
 
 The first solution is (36,126)25(36)+7(126)=1
 

Next positive solution:

Cc0+Aa0=1First solution  (c0, a0)All solutions  (c0+zAgcd(C,A), a0zCgcd(C,A))

 

 25c+7a=18First solution  (c0=36, a0=126)All solutions  (36z71, 126+z(25)1)

we have:

{ ( 36+7z, 126+25z) | zZ }

 

c = -36+7*6 = 6

a = -126 + 25*6 = 24

 

b=524a1+ab=524241+24b=50025b=20

 

cd+c+d=104d=104c1+cd=10461+6d=987d=14

 

check:

abcd=2420614=8!=40320 okay 

 

 Jul 8, 2015
 #3
avatar+130477 
+18

ab + a + b = 524   →   b(1 + a)  =  [524 - a]    →   b =  [524 - a] / [ 1 + a]

 

bc + b + c =  146   →   [524 - a] / [ 1 + a]c +  [524 - a] / [ 1 + a] + c = 146   →

c (  [524 - a] / [ 1 + a] + 1 )  =  146 -  [524 - a] / [ 1 + a]    →

c (  [ 1 + a + 524 -  a] / [ 1 + a]  =  ( [ 146 + 146a - 524 + a] / [1 + a]     →

c (525)   =  (147a - 378)     →   c   =  (147a - 378)/ (525) 

 

cd + c + d   =  104    →    (147a - 378)/ (525)d  +  (147a - 378)/ (525) + d = 104     →

d( [ 147a - 378]/ (525)  + 1 )  =  104 -  (147a - 378)/ (525)    →

d ( 525 - 378 + 147a) / (525)  =  (54600 + 378  - 147a) / (525)    →

d (147 + 147a) =  (54978 - 147a)   →   147d (1 + a) =  (54978 - 147a)   →

d (1 + a)  = (374 - a)  →   d =   (374 - a) / (1 +a)

 

Therefore

abcd =  8! = 40320

a*  [524 - a] / [ 1 + a]  *  (147a - 378)/ (525) * (374 - a) / (1 +a)  = 40320 

a * (524 -a) (147a - 378)(374 - a)  = 40320 (525) (1 + a)^2   ...  simplify

147a^4 - 132384a^3 + 29147916a^2 -74078928a    =  40320 (525)(1 + a)^2

21a( 7a^3 - 6304a^2 + 1387996a - 3527568) = 40320 (525)(1 + a)^2

a ( 7a^3 - 6304a^2 + 1387996a - 3527568) = 40320(25)(1 + a)^2

7a^4 - 6304a^3 + 1387996a^2 - 3527568a = 1008000a^2 + 2016000a + 1008000

7a^4 - 6304a^3 + 379996a^2 - 5543568a - 1008000 = 0   factor

(a - 24) (7a^3 -6136a^2 +232732a + 42000)   = 0

a = 24  is the only integer solution

b =  [524 - 24] / [ 1 + 24]  = 500/25 = 20

c =  (147(24) - 378)/ (525) = 6

d =  (374 - 24) / (1 +24)  = 350 / 25  = 14

 

And  24 * 20 * 6 * 14 =  40320

 

And a - d = 24 - 14  = 10

 

 

  

 Jul 8, 2015
 #4
avatar+33658 
+15

Here's yet another approach!

 

 integers 1

 integers 2

.

 Jul 8, 2015
 #5
avatar+26397 
+18

 

here is an easier way, because: 0.28+0.72=1c=0.72+0.28ac=0.28a(10.28)c=0.28a1+0.28(1+c)=0.28(1+a)| we set C=1+c and A=1+aC=0.28A|25 to get the lowest integer 25C=7A25C7A=0| we see gcd(25,7)=1We have immediately the solution257725=0|C=7 and A=25and backC=1+c=7 so c=71=6A=1+a=25 so a=251=24

 

excursion:

We have also a function for a:

7a46304a3+379996a25543568a1008000=0a1=0.18a2=24a3=39.92a4=836.83

.
 Jul 9, 2015

2 Online Users