+0  
 
0
1179
3
avatar+249 

1. Let \(f(x) = \left\lfloor\dfrac{2 - 3x}{x + 5}\right\rfloor\). Evaluate \(F (1) + f (2) + f (3) + ... + f (999) + f (1000)\)

(This sum has 1000 terms, one for the result when we input each integer from 1 to 1000 into \(f\).)

 

2. The function \(f(x)\) is defined for \(1 ≤ x ≤ 5\) as follows: \(f(x) = \left\{ \begin{array}{cl} 2x + 1 & \text{if }1 \le x \le 2, \\ 7 - x & \text{if }2 < x \le 3, \\ 10 - 2x & \text{if }3 < x \le 4, \\ 10 - x & \text{if }4 < x \le 5. \end{array}\right.\)

Find all real numbers \(x\) such that \(f(x) = x\).

If you find more than one answer, list them all, separated by commas.  

 

3. Find constants \(A\) and \(B\) such that \(\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\)

for all \(x\) such that \(x ≠ -1\) and \(x ≠ 2\). Give your answer as the ordered pair \((A, B)\).

 Sep 22, 2016

Best Answer 

 #2
avatar+23252 
+10

LEt me try to answer question #3:

 

(x + 7) / (x2 - x - 2)  =  A / (x - 2) + B / (x + 1)

 

Since  x2 - x - 2  =  (x - 2)(x + 1)

--->   (x + 7) / (x2 - x - 2)  =  (x + 7) / [ (x - 2)(x + 1) ]  =

 

(x + 7) / [ (x - 2)(x + 1) ]  =  A / (x - 2) + B / (x + 1)

 

Writing with the common denominator of  (x - 2)(x + 1)

(x + 7) / [ (x - 2)(x + 1) ]  =  [ A(x + 1) ] / [ (x - 2)(x + 1) ] + [B(x - 2) ] / [ (x - 2)(x + 1) ]

 

Since the denominators are equal, they can be ignored:

x + 7  =  A(x + 1) + B(x - 2)

x + 7  =  Ax + A + Bx - 2B

x + 7  =  Ax + Bx + A - 2B

Set the x-term on the left side equal to the x-terms on the right side:  x  =  Ax + Bx

   --->   x  =  (A + B)x   --->   1x  =  (A + B)x   --->   1  =  A + B

Set the number term on the left side equal to the number terms on the right side:  7  =  A - 2B

 

Solving:  A +   B  =  1   --->   x -1   --->   -A -  B  =  -1

                A - 2B  =  7                      --->    A - 2B  =  7

Adding down the columns:                         -3B  =  6

                                                                           B  =  -2

 

Since  B = -2:   A + B  =  1   --->   A + -2  =  1   --->   A  =  3

 Sep 22, 2016
 #1
avatar+23252 
+10

Let me try to answer question #2:

 

Set each part of f(x) = x for the domain of that part.

1)  2x + 1  =  x  for 1 <= x <= 2

        x + 1  =  0

              x  =  -1     Since this value is not within 1 <= x <= 2, there is no answer for this section.

 

2)  7 - x  =  x  for  2 <  x  <= 3  

          7  =  2x

           x  =  3.5    Since this value is not within 2 < x <= 3, there is no answer for this section. 

 

3)  10 - 2x  =  x  for  3 < x <= 4

              10  =  3x

              x  =  3 1/3     This is within the domain, so this is part of the answer.

 

4)  10 - x  =  x  for  4 < x <= 5

           10  =  2x

             x  =  5      This is within the domain, so this is part of the answer.

 

Answer:  3 1/3,  5

 Sep 22, 2016
 #2
avatar+23252 
+10
Best Answer

LEt me try to answer question #3:

 

(x + 7) / (x2 - x - 2)  =  A / (x - 2) + B / (x + 1)

 

Since  x2 - x - 2  =  (x - 2)(x + 1)

--->   (x + 7) / (x2 - x - 2)  =  (x + 7) / [ (x - 2)(x + 1) ]  =

 

(x + 7) / [ (x - 2)(x + 1) ]  =  A / (x - 2) + B / (x + 1)

 

Writing with the common denominator of  (x - 2)(x + 1)

(x + 7) / [ (x - 2)(x + 1) ]  =  [ A(x + 1) ] / [ (x - 2)(x + 1) ] + [B(x - 2) ] / [ (x - 2)(x + 1) ]

 

Since the denominators are equal, they can be ignored:

x + 7  =  A(x + 1) + B(x - 2)

x + 7  =  Ax + A + Bx - 2B

x + 7  =  Ax + Bx + A - 2B

Set the x-term on the left side equal to the x-terms on the right side:  x  =  Ax + Bx

   --->   x  =  (A + B)x   --->   1x  =  (A + B)x   --->   1  =  A + B

Set the number term on the left side equal to the number terms on the right side:  7  =  A - 2B

 

Solving:  A +   B  =  1   --->   x -1   --->   -A -  B  =  -1

                A - 2B  =  7                      --->    A - 2B  =  7

Adding down the columns:                         -3B  =  6

                                                                           B  =  -2

 

Since  B = -2:   A + B  =  1   --->   A + -2  =  1   --->   A  =  3

geno3141 Sep 22, 2016
 #3
avatar+129899 
+5

(1)   floor [  (2 - 3x) / ( x + 5) ]

 

Note     f(1) = -1    and f(1000)   = -3

 

f(1) = -1  

f(2) = -1

f(3)  = -1

f(4)  = - 2

 

Now, we need to find out where the function  =  exactly  -2

 

Solving this

 

[  (2 - 3x) / ( x + 5) ]  = -2, we have   x = 12

 

So.....from f(4) to f(12), the function takes  on a  floor value of -2  for each successive integer value of x

 

And from f(13) to f(1000)  the function takes on a floor value of -3  for each successive integer value of x

 

So

 

f(1) + f(2) + f(3) + ... + f(999) + f(1000)   =

 

3(-1) + 9(-2) + 988(-3)  = 

 

-2985

 

 

 

 

cool cool cool

 Sep 22, 2016

2 Online Users

avatar