Let
f(x) = 2x^2 - 3 if x <= 2
f(x) = ax - 7 if x > 2
Find a if the graph of y = f(x) is continuous (which means the graph can be drawn without lifting your pencil from the paper)
Let
f(x) = 2x^2 - 3 if x <= 2
gx) = ax - 7 if x > 2
Find a if the graph of y = f(x) is continuous
Hello Guest!
f(x)=2x2−3f′(x)=4x=ag(x)=ax−74x=a inserted in g(x)g(x)=4x2−7f(x)=g(x)
2x2−3=4x2−72x2=4x=±√2
y=2⋅2−3
y=1
g(x)=ax−71=a⋅√2−7a=4⋅√2
a=5.65685g(x)=5.65685x−7
\(y\in \{f(x)=2x^2-3\}\ |-∞ LaTeX is crazy today!
y ∈ {f(x)=2x2-3} | (−∞ < x ≤√2 )
y ∈ {g(x)=5.65685y-7} | (√2 < x ≤2)
y ∈ {g(x)=5.65685x-7} | (2 < x < ∞)
!