+0  
 
0
32
1
avatar

The function f(\sqrt{x + 1}) = \frac{1}{x+1} satisfies for all x \ge -1, x\neq 0. Find f(2).

 Oct 25, 2022
 #1
avatar
0

Hi Guest!

This is the question:\(\text{The function }f(\sqrt{x+1})=\dfrac{1}{x+1} \text{ satisfies for all } x \ge -1, x\neq 0. \text{ Find f(2)}\)

To find \(f(2)\) we need to make whatever inside the bracket of "f" to be 2.

I.e. 

\(\sqrt{x+1}=2\\ \iff x+1=4 \implies x=3\)

So, if we substitute x=3 in the function we get the answer.

That is, \(f(\sqrt{3+1})=f(\sqrt{4})=f(2)=\dfrac{1}{3+1}=\dfrac{1}{4}\)which is the desired answer.

I hope this helps, and don't hesitate to ask for further clarificiation or any other question :) .

 Oct 26, 2022

23 Online Users