Let
f(x) = 3x^2 + 2 if x <= 3
f(x) = ax^2 - x + 11 if x > 3
Find a if the graph of y = f(x) is continuous (which means the graph can be drawn without lifting your pencil from the paper).
Let
f(x) = 3x^2 + 2 if x <= 3
f(x) = ax^2 - x + 11 if x > 3
Find a if the graph of y = f(x) is continuous
Hello Guest!
\(f(3) = 3x^2 + 2=29\\ f(3) = a\cdot 3^2 - 3 + 11=29\\ 9a+8=29\ |\ -8\\ 9a=21\ |\ :9\)
\(a=\dfrac{7}{3}\)
The graph is \(f(x)=3x^2+2\ |\ x\leq3\\ f(x)=\dfrac{7}{3}x^2-x+11\ |\ x>3\)
!