Let be S the set of all nonzero real numbers. The function f:S→R satisfies the following two properties:
(i) First,
f(1x)=xf(x) for all x∈S.
(ii) Second,
f(1x)+f(1y)=1+f(1x+y) for all x∈S and y∈S such that x+y∈S.
Let n be the number of possible values of f(1), and let s be the sum of all possible values of f(1). Find n×s.