+0  
 
0
769
4
avatar+24 

1. The function f(xy) accepts an ordered pair as input and gives another ordered pair as output. It is defined according to the following rules: x>4, f(x,y) = (x - 4,y). If , . If x<=4 but y>4, f(x,y) = (x,y - 4). Otherwise, f(x,y) = (x + 5, y + 6). A robot starts by moving to the point (1,1). Every time it arrives at a point (x,y), it applies f to that point and then moves to f(x,y). If the robot runs forever, how many different points will it visit?

 

2. Let f(x) = 2x + 7 and g(x) = 3x + c. Find c if \((f \circ g)(x) = (g \circ f)(x)\) for all x.

 

3. Let \(x\mathbin{\spadesuit}y = x^2/y\) for all x and y such that \(y\neq 0\). Find all values of a such that \(a\mathbin{\spadesuit} 3 = 9 \)

 

4. If \(f(a) = \frac{1}{1-a}\), find the product \(f^{-1}(a) \times a \times f(a)\).

 Aug 28, 2016

Best Answer 

 #3
avatar+33652 
+10

Question 3.

 

a^2/3 = 9

 

a = 3sqrt(3)  and  a = -3sqrt(3)

 Aug 28, 2016
 #1
avatar+33652 
+10

Question1.

 

(1,1) → (6,7) → (2,7) → (2,3) → (7,9) → (3,9) → (3,5) → (3,1) → (8,7) → (4,7) → (4,3) → (9,9) → (5,9) → (1,9) → (1,5) → (1,1)

 

15 different points.

.

 Aug 28, 2016
 #2
avatar+33652 
+10

Question 2.

 

This means. 2(3x + c) + 7 = 3(2x + 7) + c    or    6x + 2c + 7 = 6x + 21 +  c

 

I'm sure you can find c from this.

 Aug 28, 2016
 #3
avatar+33652 
+10
Best Answer

Question 3.

 

a^2/3 = 9

 

a = 3sqrt(3)  and  a = -3sqrt(3)

Alan Aug 28, 2016
 #4
avatar+33652 
+10

 

f-1(a) = (a - 1)/a

 

f-1(a)*a*f(a) = (a - 1)/a * a * 1/(1 - a) → -1

.

 Aug 28, 2016

1 Online Users

avatar