The function $f$ satisfies \[f(\sqrt{x + 1}) = \frac{1}{x}\]for all $x \ge -1,$ $x\neq 0.$ Find $f(2)$.
We must first solve this
sqrt ( x + 1) = 2 square both sides
x + 1 = 4
x = 3
So .... f ( sqrt (x + 1)) = f (sqrt (3 + 1) ) = f(2) = 1/ x = 1 / 3