+0  
 
0
105
3
avatar

The greatest common divisor of two integers is (x+2) and their least common multiple is x(x+2), where x is a positive integer. If one of the integers is 24, what is the smallest possible value of the other one?

Guest Aug 29, 2018

Best Answer 

 #3
avatar+20105 
+3

The greatest common divisor of two integers is \((x+2)\)
and their least common multiple is \(x(x+2)\),
where \(x\) is a positive integer.

If one of the integers is \(24\),
what is the smallest possible value of the other one ?

 

Let \(b\) is the value of the other one

 

greatest common divisor\((24,b) = x+2 \text{ and } x \in N\)

least common multiple\((24,b) = x(x+2) \text{ and } x \in N\)

 

Formula:

\(\begin{array}{|rcll|} \hline \text{greatest common divisor}(a,b) \times \text{least common multiple}(a,b) = a\times b \\ \hline \end{array}\)

 

\(\mathbf{b =\ ?}\)

\(\begin{array}{|rcll|} \hline 24\times b &=& (x+2)\times x(x+2) \\\\ \mathbf{b} & \mathbf{=} & \mathbf{\dfrac{x(x+2)^2}{24}} \qquad x \in N, ~ x \gt 0 \\ \hline \end{array} \)

 

\(\begin{array}{|r|c|c|} \hline x \in N & \mathbf{b=\dfrac{x(x+2)^2}{24}} & \text{integer}\ ? \\ \hline 1 & \dfrac{3}{8} \\\\ 2 & \dfrac{4}{3} \\\\ 3 & \dfrac{25}{8} \\\\ 4 & \color{red}6 & \checkmark \\\\ \cdots & \cdots \\\\ \hline \end{array}\)

 

The smallest possible value of the other one is \(\mathbf{6}\) and \(x = 4\)

 

Check:

\(\begin{array}{lcl} \text{greatest common divisor}(24,6) &=& 4+2 = 6 \\ \text{least common multiple}(24,6) &=& 4(4+2)= 4\cdot 6 = 24 \\ \end{array}\)

 

laugh

heureka  Aug 30, 2018
 #1
avatar
0

Please I need help fast!!

Guest Aug 29, 2018
 #2
avatar
+1

The smallest value of the other integer appears to be 60.

GCD[24, 60] =12, so (x + 2) =12 and x=10

LCM[24, 60] =120, so that x(x + 2) =10 x 12 = 120 

Guest Aug 30, 2018
edited by Guest  Aug 30, 2018
 #3
avatar+20105 
+3
Best Answer

The greatest common divisor of two integers is \((x+2)\)
and their least common multiple is \(x(x+2)\),
where \(x\) is a positive integer.

If one of the integers is \(24\),
what is the smallest possible value of the other one ?

 

Let \(b\) is the value of the other one

 

greatest common divisor\((24,b) = x+2 \text{ and } x \in N\)

least common multiple\((24,b) = x(x+2) \text{ and } x \in N\)

 

Formula:

\(\begin{array}{|rcll|} \hline \text{greatest common divisor}(a,b) \times \text{least common multiple}(a,b) = a\times b \\ \hline \end{array}\)

 

\(\mathbf{b =\ ?}\)

\(\begin{array}{|rcll|} \hline 24\times b &=& (x+2)\times x(x+2) \\\\ \mathbf{b} & \mathbf{=} & \mathbf{\dfrac{x(x+2)^2}{24}} \qquad x \in N, ~ x \gt 0 \\ \hline \end{array} \)

 

\(\begin{array}{|r|c|c|} \hline x \in N & \mathbf{b=\dfrac{x(x+2)^2}{24}} & \text{integer}\ ? \\ \hline 1 & \dfrac{3}{8} \\\\ 2 & \dfrac{4}{3} \\\\ 3 & \dfrac{25}{8} \\\\ 4 & \color{red}6 & \checkmark \\\\ \cdots & \cdots \\\\ \hline \end{array}\)

 

The smallest possible value of the other one is \(\mathbf{6}\) and \(x = 4\)

 

Check:

\(\begin{array}{lcl} \text{greatest common divisor}(24,6) &=& 4+2 = 6 \\ \text{least common multiple}(24,6) &=& 4(4+2)= 4\cdot 6 = 24 \\ \end{array}\)

 

laugh

heureka  Aug 30, 2018

18 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.