+0

geo hard

0
274
1

The vertices of a triangle are the points of intersection of the line  $$y = -x-1$$ , the line $$x=2$$ , and $$y = \frac{1}{5}x+\frac{13}{5}$$ . Find an equation of the circle passing through all three vertices. Mar 6, 2018

#1
+2

I'm sure there is an easier way to do this, but here is one way to get the answer....

The intersection point of  y = -x - 1  and  x = 2   is   (2, -3)

The intersection point of  y = -x - 1  and  y  =  1/5x + 13/5   is   (-3, 2)

The intersection point of  x = 2  and  y = 1/5x + 13/5   is   (2, 3)

equation of a circle:    (x - h)2 + (y - k)2  =  r2

Using the point  (2, -3)  we can make the equation:    (2 - h)2 + (-3 - k)2  =  r2

Using the point  (-3, 2)  we can make the equation:    (-3 - h)2 + (2 - k)2  =  r2

Using the point  (2,  3)  we can make the equation:    (2 - h)2 + (3 - k)2  =  r2

Set the first and third values of  r2  equal to each other.

(2 - h)2 + (-3 - k)2   =    (2 - h)2 + (3 - k)2

(-3 - k)2   =   (3 - k)2

-3 - k   =   ±(3 - k)

-3 - k   =   3 - k         or         -3 - k   =   -(3 - k)

not a solution                       -3 - k   =   -3 + k

k   =   0

Use this value of  k  and set the first and second values of  r2  equal to each other.

(2 - h)2 + (-3 - 0)2   =   (-3 - h)2 + (2 - 0)2

(2 - h)2 + 9   =   (-3 - h)2 + 4

(2 - h)2 + 5   =   (-3 - h)2

(2 - h)2 - (-3 - h)2  =  -5

(4 - 4h + h2) - (9 - 6h + h2)  =  -5

-5 + 2h  =  -5

2h  =  0

h  =  0

Now we can find  r2 .

(2 - 0)2 + (-3 - 0)2  =  r2

13  =  r2

So the equation of the circle is...

x2 + y2  =  13

Here's a graph to check this:   https://www.desmos.com/calculator/tcsq7scrno

Mar 6, 2018