+0  
 
0
173
1
avatar+621 

The vertices of a triangle are the points of intersection of the line  \(y = -x-1\) , the line \(x=2\) , and \(y = \frac{1}{5}x+\frac{13}{5}\) . Find an equation of the circle passing through all three vertices.
 

mathtoo  Mar 6, 2018
 #1
avatar+7336 
+2

I'm sure there is an easier way to do this, but here is one way to get the answer....

 

The intersection point of  y = -x - 1  and  x = 2   is   (2, -3)

The intersection point of  y = -x - 1  and  y  =  1/5x + 13/5   is   (-3, 2)

The intersection point of  x = 2  and  y = 1/5x + 13/5   is   (2, 3)

 

equation of a circle:    (x - h)2 + (y - k)2  =  r2

 

Using the point  (2, -3)  we can make the equation:    (2 - h)2 + (-3 - k)2  =  r2

Using the point  (-3, 2)  we can make the equation:    (-3 - h)2 + (2 - k)2  =  r2

Using the point  (2,  3)  we can make the equation:    (2 - h)2 + (3 - k)2  =  r2

 

Set the first and third values of  r2  equal to each other.

 

(2 - h)2 + (-3 - k)2   =    (2 - h)2 + (3 - k)2

(-3 - k)2   =   (3 - k)2

-3 - k   =   ±(3 - k)

-3 - k   =   3 - k         or         -3 - k   =   -(3 - k)

not a solution                       -3 - k   =   -3 + k

                                             k   =   0

 

Use this value of  k  and set the first and second values of  r2  equal to each other.

 

(2 - h)2 + (-3 - 0)2   =   (-3 - h)2 + (2 - 0)2

(2 - h)2 + 9   =   (-3 - h)2 + 4

(2 - h)2 + 5   =   (-3 - h)2

(2 - h)2 - (-3 - h)2  =  -5

(4 - 4h + h2) - (9 - 6h + h2)  =  -5

-5 + 2h  =  -5

2h  =  0

h  =  0

 

Now we can find  r2 .

 

(2 - 0)2 + (-3 - 0)2  =  r2

13  =  r2

 

So the equation of the circle is...

 

x2 + y2  =  13

 

Here's a graph to check this:   https://www.desmos.com/calculator/tcsq7scrno

hectictar  Mar 6, 2018

31 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.