+0  
 
0
56
3
avatar

Quadrilateral \(ABCD\) is an isosceles trapezoid, with bases \(\overline{AB}\) and \(\overline{CD}\). A circle is inscribed in the trapezoid, as shown below. (In other words, the circle is tangent to all the sides of the trapezoid.) The length of base \(\overline{AB}\) is \(2x\) and the length of base \(\overline{CD}\) is \(2y\). Prove that the radius of the inscribed circle is \(\sqrt{xy}.\)

HINT: When you have a circle that is tangent to lines, connect the center of the circle to the points of tangency.

 Jan 31, 2021
 #1
avatar+116126 
0

Here :    https://web2.0calc.com/questions/pls-help_118

 

 

cool cool cool

 Jan 31, 2021
 #2
avatar
0

link not available :((

Guest Jan 31, 2021
 #3
avatar
0

https://web2.0calc.com/questions/please-help-asap-and-explain

 Feb 1, 2021

60 Online Users

avatar
avatar
avatar