Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2576
2
avatar+818 

Triangles ABC and ABD are isosceles with AB=AC=BD, and ¯BD intersects ¯AC at E. If ¯BD¯AC, then what is the value of C+D?

 

https://latex.artofproblemsolving.com/8/3/6/836d27bee8c65b6b978cfc8c1ef0662feec4c994.png

 Feb 19, 2018
 #1
avatar+130466 
+1

Angle C  =  ACB      Angle D  = ADB

 

BAD  = ADB         ABC  = ACB

 

 

DBA  + BAC   =  90    ⇒   DBA  = 90 - BAC 

ACB + DBC  = 90    ⇒      DBC =  90 - ACB 

DAC + ADB  = 90   ⇒       DAC  = 90 - ADB       

 

DAC + BAC  = BAD                      DBA + DBC = ABC

DAC + BAC  = ADB                      DBA + DBC =  ACB

[90 - ADB] + BAC  = ADB             DBA + [90 - ACB]  = ACB

90 + BAC = 2ADB   (1)                  90 + DBA  = 2ACB

                                                      90 + [90 - BAC]  = 2ACB

                                                     180  - BAC  = 2ACB

                                                      BAC  = 180 - 2ACB   (2)

 

Sub  (2)  into (1)

90 + [180 - 2ACB]  = 2ADB

270 =  2ACB + 2ADB

135  = ACB + ADB

135  =  ∠C +  ∠ D

 

 

cool cool cool

 Feb 20, 2018
 #2
avatar+26396 
+1

Triangles ABC and ABD are isosceles with

AB=AC=BD,
and¯BD intersects¯AC at E.
If ¯BD¯AC, then what is the value of C+D?

 


D=BDA=DABC=BCA=CBAα=DBAβ=BACα+β=90

 

α=1802×Dβ=1802×Cα+β=1802×D+1802×C|α+β=9090=1802×D+1802×C90=3602×(C+D)2×(C+D)=360902×(C+D)=270C+D=135

 

laugh

 Feb 20, 2018
edited by heureka  Feb 20, 2018

3 Online Users