+0  
 
0
125
2
avatar+206 

Triangles ABC and ABD are isosceles with \(AB=AC=BD\), and \(\overline{BD}\) intersects \(\overline{AC}\) at \(E\). If \(\overline{BD}\perp\overline{AC}\), then what is the value of \(\angle C+\angle D\)?

 

https://latex.artofproblemsolving.com/8/3/6/836d27bee8c65b6b978cfc8c1ef0662feec4c994.png

mathtoo  Feb 19, 2018
Sort: 

2+0 Answers

 #1
avatar+86622 
+1

Angle C  =  ACB      Angle D  = ADB

 

BAD  = ADB         ABC  = ACB

 

 

DBA  + BAC   =  90    ⇒   DBA  = 90 - BAC 

ACB + DBC  = 90    ⇒      DBC =  90 - ACB 

DAC + ADB  = 90   ⇒       DAC  = 90 - ADB       

 

DAC + BAC  = BAD                      DBA + DBC = ABC

DAC + BAC  = ADB                      DBA + DBC =  ACB

[90 - ADB] + BAC  = ADB             DBA + [90 - ACB]  = ACB

90 + BAC = 2ADB   (1)                  90 + DBA  = 2ACB

                                                      90 + [90 - BAC]  = 2ACB

                                                     180  - BAC  = 2ACB

                                                      BAC  = 180 - 2ACB   (2)

 

Sub  (2)  into (1)

90 + [180 - 2ACB]  = 2ADB

270 =  2ACB + 2ADB

135  = ACB + ADB

135  =  ∠C +  ∠ D

 

 

cool cool cool

CPhill  Feb 20, 2018
 #2
avatar+19372 
+1

Triangles ABC and ABD are isosceles with

\(AB=AC=BD\),
and\( \overline{BD}\) intersects\( \overline{AC}\) at \(E\).
If \(\overline{BD}\perp\overline{AC}\), then what is the value of \(\angle C+\angle D\)?

 


\(\angle D = BDA = DAB \\ \angle C = BCA = CBA \\ \angle \alpha = DBA\\ \angle \beta = BAC \\ \angle \alpha +\angle \beta = 90^{\circ}\)

 

\(\begin{array}{|rcll|} \hline \angle \alpha &=& 180^{\circ} - 2\times \angle D \\ \angle \beta&=& 180^{\circ} - 2\times \angle C \\ \angle \alpha +\angle \beta &=& 180^{\circ} - 2\times \angle D+180^{\circ} - 2\times \angle C \quad & | \quad \angle \alpha +\angle \beta = 90^{\circ}\\ 90^{\circ} &=& 180^{\circ} - 2\times \angle D+180^{\circ} - 2\times \angle C \\ 90^{\circ} &=& 360^{\circ} - 2\times (\angle C + \angle D) \\ 2\times(\angle C + \angle D) &=& 360^{\circ} - 90^{\circ} \\ 2\times(\angle C + \angle D) &=& 270^{\circ} \\ \mathbf{ \angle C + \angle D } & \mathbf{=}& \mathbf{135^{\circ}} \\ \hline \end{array}\)

 

laugh

heureka  Feb 20, 2018
edited by heureka  Feb 20, 2018

5 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy