Triangles ABC and ABD are isosceles with AB=AC=BD, and ¯BD intersects ¯AC at E. If ¯BD⊥¯AC, then what is the value of ∠C+∠D?
https://latex.artofproblemsolving.com/8/3/6/836d27bee8c65b6b978cfc8c1ef0662feec4c994.png
Angle C = ACB Angle D = ADB
BAD = ADB ABC = ACB
DBA + BAC = 90 ⇒ DBA = 90 - BAC
ACB + DBC = 90 ⇒ DBC = 90 - ACB
DAC + ADB = 90 ⇒ DAC = 90 - ADB
DAC + BAC = BAD DBA + DBC = ABC
DAC + BAC = ADB DBA + DBC = ACB
[90 - ADB] + BAC = ADB DBA + [90 - ACB] = ACB
90 + BAC = 2ADB (1) 90 + DBA = 2ACB
90 + [90 - BAC] = 2ACB
180 - BAC = 2ACB
BAC = 180 - 2ACB (2)
Sub (2) into (1)
90 + [180 - 2ACB] = 2ADB
270 = 2ACB + 2ADB
135 = ACB + ADB
135 = ∠C + ∠ D
Triangles ABC and ABD are isosceles with
AB=AC=BD,
and¯BD intersects¯AC at E.
If ¯BD⊥¯AC, then what is the value of ∠C+∠D?
∠D=BDA=DAB∠C=BCA=CBA∠α=DBA∠β=BAC∠α+∠β=90∘
∠α=180∘−2×∠D∠β=180∘−2×∠C∠α+∠β=180∘−2×∠D+180∘−2×∠C|∠α+∠β=90∘90∘=180∘−2×∠D+180∘−2×∠C90∘=360∘−2×(∠C+∠D)2×(∠C+∠D)=360∘−90∘2×(∠C+∠D)=270∘∠C+∠D=135∘