+0  
 
0
43
4
avatar+86 

We have a right triangle triangle ABC where the legs AB and BC have lengths 6 and 3sqrt3, respectively. Medians AM and CN meet at point P. What is the length of CP?

MIRB15  Jul 12, 2017
Sort: 

4+0 Answers

 #1
avatar+75017 
+1

 

Let AM lie on a line

The slope is -6/(1.5 sqrt (3))  =  -4/sqrt (3)

And the equation of this line   y =     -4x/sqrt (3)  + 6

 

Let CN lie on another line

Ths slope is -3/ 3sqrt (3)  =  -1/sqrt(3)

And the equation of this line is y =  -1x/sqrt(3) + 3

 

Setting these two lines equal and solving for x will give us the x coordinate for P

 

 -4x/sqrt (3)  + 6 = -1x/sqrt(3) + 3  rearrange

 

3  =  [ 4 - 1] x / sqrt (3)

 

3  =  3 x/ sqrt (3)       multiply both sides by  sqrt (3) / 3

 

sqrt (3)  = x

 

Subbing this into the second equation to find the y coordinate of P we have that

y =   -1 sqrt (3)  /sqrt(3) + 3 =  2

 

So......using the distance formula, CP = 

 

sqrt [ (3sqrt(3) - sqrt (3))^2  + (2 - 0)^2 ]  = sqrt [ (2sqrt(3))^2  + (2)^2 ] =

sqrt [ 12 + 4]  =

sqrt [16]  =   4

 

Here's a pic

 

 

 

cool cool cool

CPhill  Jul 13, 2017
edited by CPhill  Jul 13, 2017
 #2
avatar+75017 
+1

 

Here's another method to solve this......

 

Connect  MN......Since, this segment divides the sides AB and BC of triangle ABC proportionally, then MN is parallel to AC

 

And AM  is a transversal  between two parallel lines so that angles MAC and AMN  form equal alternate interior angles.......and angle APC = angle MPN since they are both vertical angles

 

So......by angle-angle congruency, triangle APC is similar to triangle MPN

 

Also, since AB and MN are parallel, then angle NMB = angle ACB  and  angle NBM = angle ABC.....so, again, by AA congruency, triangle NBM is similar to triangle ABC

 

But BC = 2BM....and since similar triangles are similar in all respects, AC = 2NM

 

But..triangle APC was shown to be similar to triangle MPN..... so.....if AC = 2MN, then PC = 2PN 

 

And using the distance formula,  CN  = 6

 

So.....since PC + PN  = CN....then, by substitution,  2PN + PN = 6

...  so 3PN  = 6

 ....so PN = 2

 

And PC = 2PN = 2(2) =  4

 

Here's a pic :

 

 

 

 

 

cool cool cool

CPhill  Jul 13, 2017
edited by CPhill  Jul 13, 2017
 #3
avatar+18281 
+1

We have a right triangle triangle ABC where the legs AB and BC have lengths 6 and 3sqrt3, respectively.

Medians AM and CN meet at point P. What is the length of CP?

 

\(\begin{array}{rcll} \text{Let } \vec{a} &=& \vec{CB} \\ \text{Let } \vec{b} &=& \vec{AC} \\ \text{Let } \vec{c} &=& \vec{AB} = \vec{a} + \vec{b} \\ \text{Let } \vec{u} &=& \vec{CN} = \frac12\vec{c} - \vec{b} = \frac12(\vec{a} + \vec{b}) - \vec{b} = \mathbf{ \frac12 \vec{a} - \frac12 \vec{b} } \\ \text{Let } \vec{v} &=& \vec{AM} = \mathbf{ \vec{b} + \frac12 \vec{a} } \\ \end{array} \)

 

\(\begin{array}{|lrcll|} \hline \mathbf{ \vec{b}+\lambda \vec{u} - \mu \vec{v} } & \mathbf{=} & \mathbf{0} \\\\ & \vec{b}+\lambda \vec{u} - \mu \vec{v} &=& 0 \quad & | \quad \mathbf{ \vec{u} = \frac12 \vec{a} - \frac12 \vec{b} } \\ & \vec{b}+\lambda (\frac12 \vec{a} - \frac12 \vec{b}) - \mu \vec{v} &=& 0 \quad & | \quad \mathbf{ \vec{v} = \vec{b} + \frac12 \vec{a} } \\ & \vec{b}+\lambda (\frac12 \vec{a} - \frac12 \vec{b}) - \mu (\vec{b} + \frac12 \vec{a}) &=& 0 \\ & \vec{b}+ \frac{\lambda}{2} \vec{a} - \frac{\lambda}{2} \vec{b} - \mu \vec{b} - \frac{\mu}{2} \vec{a} &=& 0 \\ & \frac{\vec{a}}{2} \cdot (\underbrace{\lambda -\mu}_{=0}) &=& \vec{b} \cdot ( \underbrace{\frac{\lambda}{2} + \mu - 1}_{=0} ) \\\\ (1) & \lambda -\mu &=& 0 \\ & \mu &=& \lambda \\\\ (2) & \frac{\lambda}{2} + \mu - 1 &= & 0 \\ & \frac{\lambda}{2} + \lambda - 1 &= & 0 \\ & \frac{3}{2}\lambda &= & 1 \\ & \lambda &= & \frac{2}{3} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \overline{CP} &=& \lambda \cdot \overline{CN} \quad & | \quad \overline{CN}^2 = (3\cdot \sqrt{3})^2 + (\frac{6}{2})^2 = 36 \\ \overline{CP} &=& \frac{2}{3} \cdot 6 \quad & | \quad \overline{CN} = \sqrt{36} = 6 \\ \overline{CP} &=& 2\cdot 2 \\ \mathbf{\overline{CP}} & \mathbf{=} & \mathbf{4} \\ \hline \end{array} \)

 

 

laugh

heureka  Jul 13, 2017
 #4
avatar+18281 
0

We have a right triangle triangle ABC where the legs AB and BC have lengths 6 and 3sqrt3, respectively.

Medians AM and CN meet at point P.

What is the length of CP?

 

another approach

 

See labeling CPhill :

 

\(\begin{array}{rcll} \text{Let } \overline{AB} &=& 6 \\ \text{Let } \overline{BC} &=& 3 \sqrt{3} \\ \text{Let } \overline{CP} &=& ? \\\\ \text{Let } \vec{A} &=& \binom{0}{6} \\ \text{Let } \vec{B} &=& \binom{0}{0} \\ \text{Let } \vec{C} &=& \binom{ 3 \sqrt{3} }{0} \\ \end{array}\)

 

Point P is the barycenter of triangle ABC

\(\begin{array}{|rcll|} \hline \vec{P} &=& \frac13 \cdot( \vec{A} + \vec{B} + \vec{C} ) \\ \vec{P} &=& \frac13 \cdot\Big( \binom{0}{6} + \binom{0}{0} + \binom{ 3 \sqrt{3} }{0} \Big) \\ \vec{P} &=& \frac13 \cdot \binom{ 0+0+3\sqrt{3} } { 6+0+0 } \\ \vec{P} &=& \frac13 \cdot \binom{ 3\sqrt{3} } { 6 } \\ \vec{P} &=& \binom{ \sqrt{3} } { 2 } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \overline{CP} &=& |\vec{C}-\vec{P}| \\ &=& |\binom{ 3 \sqrt{3} }{0}-\binom{ \sqrt{3} } { 2 }| \\ &=& | \binom{ 3 \sqrt{3}-\sqrt{3} }{0-2} | \\ &=& | \binom{ 2\sqrt{3} }{-2} | \\ &=& \sqrt{ (2\sqrt{3})^2 + (-2)^2 } \\ &=& \sqrt{ 4\cdot 3 + 4 } \\ &=& \sqrt{ 16 } \\ \mathbf{\overline{CP} } & \mathbf{=} & \mathbf{4} \\ \hline \end{array}\)

 

laugh

heureka  Jul 13, 2017

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details